DU
Menu Close

Publications

  1. Aanchal; Lalitha, C.S., Second-order optimality conditions for locally Lipschitz vector optimization problems, Optimization, 73 (5), pp. 1551 – 1570.
    DOI: https://doi.org/10.1080/02331934.2023.2169046
  2. Aasna; Rai, Pratima, Analysis of SDFEM for Singularly Perturbed Delay Differential Equation with Boundary Turning Point, International Journal of Applied and Computational Mathematics, 10 (1), art. no. 20.
    DOI: https://doi.org/10.1007/s40819-023-01648-7
  3. Abdal, Syed Mohammad; Kumar, Surendra, Existence of Integro-Differential Neutral Measure Driven System Using Monotone Iterative Technique and Measure of Noncompactness, Differential Equations and Dynamical Systems, 32 (4), pp. 1097 – 1109.
    DOI: https://doi.org/10.1007/s12591-022-00614-x
  4. Abdou, M.A.; Ouahid, Loubna; Alanazi, Meznah M.; Hendi, Awatif A.; Kumar, Sachin, Dynamics of newly created soliton solutions via Atangana–Baleanu Fractional (ABF) for system of (ISALWs) equations, Modern Physics Letters B, 38 (1), art. no. 2350208.
    DOI: https://doi.org/10.1142/S0217984923502081
  5. Alshahrani, Maryam; Ouahid, Loubna; Abdou, M.A.; Kumar, Sachin; Al Shahrani, Jameelah S., New abundant analytical solutions of coupled nonlinear Schrödinger (FNSE) equation in fractal order arising in quantum mechanics, Optical and Quantum Electronics, 56 (5), art. no. 735.
    DOI: https://doi.org/10.1007/s11082-024-06378-8
  6. Ambethkar, Vusala; Basumatary, Lakshmi Rani, Insight into the dynamics of a Newtonian fluid through a rectangular domain with an emphasis on heat transfer, Heat Transfer, 53 (1), pp. 158 – 176.
    DOI: https://doi.org/10.1002/htj.22946
  7. Ambethkar, Vusala; Lamkhonei, Baby, An Improved Fifth-Order WENO Scheme for Solving Hyperbolic Conservation Laws Near Critical Points, International Journal of Applied and Computational Mathematics, 10 (6), art. no. 171.
    DOI: https://doi.org/10.1007/s40819-024-01802-9
  8. Anand, Jatin; Lata, Sneh; Srivastava, Sachi, Weighted and Unweighted Composition Operators Close to Isometries, Mediterranean Journal of Mathematics, 21 (5), art. no. 144.
    DOI: https://doi.org/10.1007/s00009-024-02688-z
  9. Anand, Swati; Rai, Pratima; Kumar, Sushil, Close-To-convex functions associated with a rational function, Mathematica Slovaca, 74 (2), pp. 339 – 354.
    DOI: https://doi.org/10.1515/ms-2024-0026
  10. Bansal, Piyush; Kumar, Ajay; Bansal, Ashish, Qualitative uncertainty principle for continuous modulated shearlet transform, Advances in Operator Theory, 9 (3), art. no. 46.
    DOI: https://doi.org/10.1007/s43036-024-00346-5
  11. Chaudhary, Bipin Kumar; Singh, Randheer, Spherical steepened wave in interstellar van der Waals dusty gas clouds, Physics of Fluids, 36 (8), art. no. 086141.
    DOI: https://doi.org/10.1063/5.0215115
  12. Chaudhary, Bipin Kumar; Singh, Randheer; Shah, Sarswati, Delta shocks and vacuums in the Aw-Rascle model with anti van der Waals Chaplygin gas under the flux approximation, Physics of Fluids, 36 (1), art. no. 016144.
    DOI: https://doi.org/10.1063/5.0176779
  13. Chill, Ralph; Sharma, Praveen; Srivastava, Sachi, Real interpolation of functions with applications to accretive operators on Banach spaces, Journal of Differential Equations, 402, pp. 554 – 592.
    DOI: https://doi.org/10.1016/j.jde.2024.05.024
  14. Dalal, Preeti; Singh, Karanjeet; Kumar, Sachin; Malik, Sandeep, Noether symmetries and conservation laws in some analytic spherically symmetric spacetimes of f(R, L m ) gravity, Physica Scripta, 99 (9), art. no. 095021.
    DOI: https://doi.org/10.1088/1402-4896/ad6e3f
  15. Das, Ruchi; Kumar, Devender; Salman, Mohammad, Topological Sensitivity and its Stronger forms nn Semiflows, Bulletin of the Korean Mathematical Society, 61 (1), pp. 247 – 262.
    DOI: https://doi.org/10.4134/BKMS.b230092
  16. Dhiman, Shubham Kumar; Kumar, Sachin, Analyzing specific waves and various dynamics of multi-peakons in (3+1)-dimensional p-type equation using a newly created methodology, Nonlinear Dynamics, 112 (12), pp. 10277 – 10290.
    DOI: https://doi.org/10.1007/s11071-024-09588-7
  17. Dimpi; Singh, Hemant Kumar, Fixed point sets and orbit spaces of wedge of three spheres, Topology and its Applications, 346, art. no. 108856.
    DOI: https://doi.org/10.1016/j.topol.2024.108856
  18. Dimpi; Singh, Hemant Kumar, Orbit spaces of free involutions on the product of three spheres, Quaestiones Mathematicae, 47 (6), pp. 1213 – 1238.
    DOI: https://doi.org/10.2989/16073606.2023.2288707
  19. Dinh, Hai Quang; Gaur, Atul; Kumar, Pratyush; Singh, Manoj Kumar; Singh, Abhay Kumar, Cyclic Codes over rings of matrices, Advances in Mathematics of Communications, 18 (4), pp. 1100 – 1122. 
  20. Gaur, Atul; Kumar, Rahul, Maximal non-valuative domains, Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 134 (1), art. no. 13.
    DOI: https://doi.org/10.1007/s12044-024-00781-7
  21. Gaur, Atul; Kumar, Rahul; Singh, Anant, Almost ϕ-integrally closed rings, Communications in Algebra, 52 (3), pp. 960 – 968.
    DOI: https://doi.org/10.1080/00927872.2023.2255270
  22. Gupta, Prachi; Mishra, P.R.; Gaur, Atul, Bounds on the maximum nonlinearity of permutations on the rings Zp and Z2p, Applicable Algebra in Engineering, Communications and Computing, 35 (6), pp. 859 – 874.
    DOI: https://doi.org/10.1007/s00200-022-00594-z
  23. Jarrah, A.M.; Khanna, Nikhil; Zothansanga, A.; Kumar, Dilip, A Short Note on Generalized Variation Diminishing Wavelets, Iranian Journal of Science, 48 (5), pp. 1299 – 1305.
    DOI: https://doi.org/10.1007/s40995-024-01689-7
  24. Jindal, D.; Vashisht, Lalit K., Nonstationary matrix-valued multiresolution analysis from the extended affine group, Analysis Mathematica, 50 (1), pp. 189 – 213.
    DOI: https://doi.org/10.1007/s10476-024-00004-1
  25. Jyoti; Vashisht, Lalit Kumar, On matrix-valued Riesz bases over LCA groups, International Journal of Wavelets, Multiresolution and Information Processing, 22 (5), art. no. 2450019.
    DOI: https://doi.org/10.1142/S021969132450019X
  26. Karuna; Lalitha, C.S. Convergence, Scalarization and Continuity of Minimal Solutions in Set Optimization, Journal of the Operations Research Society of China, 12, pp. 773 – 793.
    DOI: https://doi.org/10.1007/s40305-022-00440-6
  27. Kaur, Gurpreet; Nagpal, Sumit, Radius problems for ratios of analytic functions involving sigmoid domain, Asian-European Journal of Mathematics, 17 (1), art. no. 2350239.
    DOI: https://doi.org/10.1142/S179355712350239X
  28. Kaur, Gurpreet; Nagpal, Sumit, Radius of convexity of classes associated with the ratio of derivative functions, Rendiconti del Circolo Matematico di Palermo, 73 (2), pp. 587 – 601.
    DOI: https://doi.org/10.1007/s12215-023-00938-9
  29. Kipgen, Lhinghoineng; Singh, Randheer, Riemann problem for van der Waals reacting gases with dust particles, Ricerche di Matematica, 73 (2), pp. 965 – 988.
    DOI: https://doi.org/10.1007/s11587-021-00654-5
  30. Kumar, Amit; Kumar, Sachin, Dynamical behaviors with various exact solutions to a (2 + 1) -dimensional asymmetric Nizhnik-Novikov-Veselov equation using two efficient integral approaches, International Journal of Modern Physics B, 38 (5), art. no. 2450064.
    DOI: https://doi.org/10.1142/S0217979224500644
  31. Kumar, Amit; Kumar, Sachin; Bohra, Nisha; Pillai, Gayathri; Kapoor, Ridam; Rao, Jahanvi, Exploring soliton solutions and interesting wave-form patterns of the (1 + 1)-dimensional longitudinal wave equation in a magnetic-electro-elastic circular rod, Optical and Quantum Electronics, 56 (6), art. no. 1029.
    DOI: https://doi.org/10.1007/s11082-024-06901-x
  32. Kumar, Devender; Das, Ruchi, Topological pseudo orbit tracing property, topological sensitivity and topological entropy, Filomat, 38 (14), pp. 5041 – 5049.
    DOI: https://doi.org/10.2298/FIL2414041K
  33. Kumar, Devender; Das, Ruchi, An Open Cover Specification Property, Journal of Dynamical and Control Systems, 30 (4), art. no. 41.
    DOI: https://doi.org/10.1007/s10883-024-09716-x
  34. Kumar, Sachin; Dhiman, Shubham Kumar, Exploring cone-shaped solitons, breather, and lump-forms solutions using the lie symmetry method and unified approach to a coupled breaking soliton model, Physica Scripta, 99 (2), art. no. 025243.
    DOI: https://doi.org/10.1088/1402-4896/ad1d9e
  35. Kumar, Sachin; Hamid, Ihsanullah, New interactions between various soliton solutions, including bell, kink, and multiple soliton profiles, for the (2+1)-dimensional nonlinear electrical transmission line equation, Optical and Quantum Electronics, 56 (7), art. no. 1173.
    DOI: https://doi.org/10.1007/s11082-024-06960-0
  36. Kumar, Sachin; Mann, Nikita, Dynamic study of qualitative analysis, traveling waves, solitons, bifurcation, quasiperiodic, and chaotic behavior of integrable kuralay equations, Optical and Quantum Electronics, 56 (5), art. no. 859.
    DOI: https://doi.org/10.1007/s11082-024-06701-3
  37. Kumar, Sachin; Mohan, Brij, Bilinearization and new center-controlled N-rogue solutions to a (3+1)-dimensional generalized KdV-type equation in plasmas via direct symbolic approach, Nonlinear Dynamics, 112 (13), pp. 11373 – 11382.
    DOI: https://doi.org/10.1007/s11071-024-09626-4
  38. Kumar, Sushil; Pandey, Rakesh Kumar; Rai, Pratima; Certain sharp estimates of Ozaki close-to-convex functions, Asian-European Journal of Mathematics, 17 (6), art. no. 2450047.
    DOI: https://doi.org/10.1142/S1793557124500475
  39. Kumar, Surendra, Approximate controllability of time-varying measure differential problem of second order with state-dependent delay and noninstantaneous impulses, Mathematical Methods in the Applied Sciences, 47 (1), pp. 190 – 205.
    DOI: https://doi.org/10.1002/mma.9650
  40. Kumar, Yogesh; Mishra, P.R.; Gaur, Atul; Mittal, Gaurav, Construction of New Hadamard Matrix Forms to Generate 4×4 and 8×8 Involutory MDS Matrices Over GF(2m) for Lightweight Cryptography, Defence Science Journal, 74 (1), pp. 68 – 78.
    DOI: https://doi.org/10.14429/dsj.74.18824
  41. Kumar, Yogesh; Mishra, P.R.; Samanta, Susanta; Gaur, Atul, A systematic construction approach for all 4×4 involutory MDS matrices, Journal of Applied Mathematics and Computing, 70 (5), pp. 4677 – 4697.
    DOI: https://doi.org/10.1007/s12190-024-02142-z
  42. Mahajan, Arpit; Thakur, Rahul; Das, Ruchi, Sensitivity and unpredictability in semiflows on topological spaces, Communications in Nonlinear Science and Numerical Simulation, 133, art. no. 107949.
    DOI: https://doi.org/10.1016/j.cnsns.2024.107949
  43. Mahajan, Arpit; Thakur, Rahul; Das, Ruchi, Sensitivity in hyperspatial and product systems via Furstenberg families, Topology and its Applications, 349, art. no. 108907.
    DOI: https://doi.org/10.1016/j.topol.2024.108907
  44. Mann, Nikita; Kumar, Sachin; Ma, Wen-Xiu, Dynamics of analytical solutions and Soliton-like profiles for the nonlinear complex-coupled Higgs field equation, Partial Differential Equations in Applied Mathematics, 10, art. no. 100733.
    DOI: https://doi.org/10.1016/j.padiff.2024.100733
  45. Mann, Nikita; Rani, Setu; Kumar, Sachin; Kumar, Raj; Novel closed-form analytical solutions and modulation instability spectrum induced by the Salerno equation describing nonlinear discrete electrical lattice via symbolic computation; Mathematics and Computers in Simulation, 219, pp. 473 – 490.
    DOI: https://doi.org/10.1016/j.matcom.2023.12.031
  46. Mishra, P.R.; Kumar, Yogesh; Samanta, Susanta; Gaur, Atul, A New Algorithm for Computing Branch Number of Non-Singular Matrices Over Finite Fields, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14974 LNCS, pp. 187 – 205.
    DOI: https://doi.org/10.1007/978-3-031-71073-5_9
  47. Moar, Anveksha; Sharma, Pradeep Kumar; Lalitha, C.S., Nonlinear scalarization in set optimization based on the concept of null set, Journal of Global Optimization, 89 (4), pp. 1099 – 1119.
    DOI: https://doi.org/10.1007/s10898-024-01385-1
  48. Mohan, Brij; Kumar, Sachin, Rogue-wave structures for a generalized (3+1)-dimensional nonlinear wave equation in liquid with gas bubbles, Physica Scripta, 99 (10), art. no. 105291.
    DOI: https://doi.org/10.1088/1402-4896/ad7cd9
  49. Mohan, Brij; Kumar, Sachin, Generalization and analytic exploration of soliton solutions for nonlinear evolution equations via a novel symbolic approach in fluids and nonlinear sciences, Chinese Journal of Physics, 92, pp. 10 – 21.
    DOI: https://doi.org/10.1016/j.cjph.2024.09.004
  50. Mohit; Jain, Ranjana, Birkhoff–James orthogonality in certain tensor products of Banach spaces II, Banach Journal of Mathematical Analysis, 18 (3), art. no. 47.
    DOI: https://doi.org/10.1007/s43037-024-00356-8
  51. Nageshwar, Rohit; Khan, Abdul Gaffar; Das, Tarun, Bi-asymptotic c-expansivity, Journal of Mathematical Analysis and Applications, 532 (1), art. no. 127955.
    DOI: https://doi.org/10.1016/j.jmaa.2023.127955
  52. Naz, Adiba; Nagpal, Sumit; Ravichandran, V., Exponential radii of starlikeness and convexity of some special functions, Ramanujan Journal, 65, 391-427.
    DOI: https://doi.org/10.1007/s11139-024-00902-w 
  53. Niwas, Monika; Dhiman, Shubham Kumar; Kumar, Sachin, Dynamical forms of various optical soliton solutions and other solitons for the new Schrödinger equation in optical fibers using two distinct efficient approaches, Modern Physics Letters B, 38 (13), art. no. 2450087.
    DOI: https://doi.org/10.1142/S0217984924500878
  54. Niwas, Monika; Kumar, Sachin; Rajput, Rahi; Chadha, Dinsha, Exploring localized waves and different dynamics of solitons in (2 + 1)-dimensional Hirota bilinear equation: a multivariate generalized exponential rational integral function approach, Nonlinear Dynamics, 112 (11), pp. 9431 – 9444.
    DOI: https://doi.org/10.1007/s11071-024-09555-2
  55. Patel, Arvind; Kumar, Manoj; Bagai, Shobha, Heat and mass transfer under MHD mixed convection in a four-sided lid-driven square cavity, Heat Transfer, 53 (3), pp. 1220 – 1266.
    DOI: https://doi.org/10.1002/htj.22993
  56. Patel, Arvind; Pandey, Komal, Self-similar flow behind a shock wave in a gas under the effect of viscosity, heat conduction, and variable ambient density, Physica Scripta, 99 (10), art. no. 105202.
    DOI: https://doi.org/10.1088/1402-4896/ad6f4f
  57. Rai, Pratima; Kumar, Sushil, Differential Subordination and Coefficient Functionals of Univalent Functions Related to cos z, Armenian Journal of Mathematics, 16 (9), pp. 1 – 18.
    DOI: https://doi.org/10.52737/18291163-2026.16.09-1-18
  58. Raj, Ankur; Nagpal, Sumit, Stable Close-to-Convexity and Radius of Full Convexity for Sense-Preserving Harmonic Mappings, Rocky Mountain Journal of Mathematics, 54 (2), pp. 525 – 540.
    DOI: https://doi.org/10.1216/rmj.2024.54.525
  59. Rani, Mamta; Sharma, Avnish K.; Tiwari, Sharwan K.; Panigrahi, Anupama, Inverses of r-primitive k-normal elements over finite fields, Ramanujan Journal, 63 (3), pp. 723 – 747.
    DOI: https://doi.org/10.1007/s11139-023-00785-3
  60. Rani, Setu; Dhiman, Shubham Kumar; Kumar, Sachin, Newly constructed closed-form soliton solutions, conservation laws and modulation instability for a (2+1)-dimensional cubic nonlinear Schrödinger’s equation using optimal system of Lie subalgebra, Optical and Quantum Electronics, 56 (4), art. no. 532.
    DOI: https://doi.org/10.1007/s11082-023-06085-w
  61. Rani, Setu; Kumar, Sachin; Kumar, Raj, Dynamical Study of Newly Created Analytical Solutions, Bifurcation Analysis, and Chaotic Nature of the Complex Kraenkel–Manna–Merle System, Qualitative Theory of Dynamical Systems, 23 (Suppl 1), art. no. 287.
    DOI: https://doi.org/10.1007/s12346-024-01148-z
  62. Salman, Mohammad; Das, Ruchi, Dynamics of Multi-sensitive Non-autonomous Systems with Respect to a Vector, Bulletin of the Malaysian Mathematical Sciences Society, 47 (2), art. no. 51.
    DOI: https://doi.org/10.1007/s40840-023-01644-6
  63. Sharma, Abhishek; Kumar, Surendra; Singh, Harendra Pal, Numerical solutions of fractional differential equation with multiple delays via block boundary value method, International Journal of Dynamics and Control, 12 (3), pp. 924 – 944.
    DOI: https://doi.org/10.1007/s40435-023-01209-2
  64. Sharma, Amit; Rai, Pratima, Numerical approximation of parabolic singularly perturbed problems with large spatial delay and turning point, Engineering Computations (Swansea, Wales), 41 (5), pp. 1141 – 1170.
    DOI: https://doi.org/10.1108/EC-09-2023-0534
  65. Sharma, Amit; Rai, Pratima; Yadav, Swati, Uniformly Convergent Numerical Approximation for Parabolic Singularly Perturbed Delay Problems with Turning Points, International Journal of Computational Methods, 21 (3), art. no. 2350031.
    DOI: https://doi.org/10.1142/S0219876223500317
  66. Sharma, Deepika; Singh, Randheer, Evolution of characteristic shocks in two-phase modified Chaplygin flow consisting of source term, Communications in Nonlinear Science and Numerical Simulation, 131, art. no. 107891.
    DOI: https://doi.org/10.1016/j.cnsns.2024.107891
  67. Singh, Randheer; Shah, Sarswati; Jena, Jasobanta, On kinematics of one-dimensional radially symmetric shocks in non-ideal reacting gases, Mathematical Methods in the Applied Sciences, 47 (4), pp. 1735 – 1749.
    DOI: https://doi.org/10.1002/mma.9511
  68. Yadav, Swati; Rai, Pratima, A Parameter Uniform Scheme for Delay Parabolic Singularly Perturbed Turning Point Problem, Differential Equations and Dynamical Systems, 32 (2), pp. 421 – 436.
    DOI: https://doi.org/10.1007/s12591-021-00577-5

©2024 Department of Mathematics, University of Delhi