DU
Menu Close

Publications (2015-20)

  1. Abdal, Syed Mohammad; Kumar, Surendra, Approximate controllability of semilinear system involving state-dependent delay via fundamental solution, Ricerche di Matematica, 69 (1), pp. 261 – 282.
    DOI: https://doi.org/10.1007/s11587-019-00461-z
  2. Abdal, Syed Mohammad; Kumar, Surendra, Approximate controllability of impulsive system involving state-dependent delay and variable delay in control via fundamental solution, Filomat, 34 (7), pp. 2293 – 2313.
    DOI: https://doi.org/10.2298/FIL2007293A
  3. Ambethkar, Vusala, Analogy Between Thermal and Mass Diffusion Effects of a Free Convective Flow in Rectangular Enclosure, Journal of Applied Mathematics and Computational Mechanics, 19 (4), pp. 5 – 20.
    DOI: https://doi.org/10.17512/jamcm.2020.4.01
  4. Anand, Jatin; Bhattacharyya, Tirthankar; Srivastava, Sachi, Some thoughts on composition operators on subspaces of the Hardy space, Archiv der Mathematik, 114 (4), pp. 431 – 444.
    DOI: https://doi.org/10.1007/s00013-019-01406-6
  5. Arendt, Wolfgang; Chalendar, Isabelle; Kumar, Mahesh; Srivastava, Sachi, Powers of Composition Operators: Asymptotic Behaviour on Bergman, Dirichlet and Bloch Spaces, Journal of the Australian Mathematical Society, 108 (3), pp. 289 – 320, Cited 13 times.
    DOI: https://doi.org/10.1017/S1446788719000235
  6. Bagai, Shobha; Kumar, Manoj; Patel, Arvind, The Four-Sided Lid Driven Square Cavity Using Stream Function-Vorticity Formulation, Journal of Applied Mathematics and Computational Mechanics, 19 (2), pp. 17 – 30.
    DOI: https://doi.org/10.17512/jamcm.2020.2.02
  7. Bagai, Shobha; Kumar, Manoj; Patel, Arvind, Mixed convection in four-sided lid-driven sinusoidally heated porous cavity using stream function-vorticity formulation, SN Applied Sciences, 2 (12), art. no. 2066.
    DOI: https://doi.org/10.1007/s42452-020-03815-7
  8. Das, Pramod; Das, Tarun, Stable group actions on uniform spaces, Topology Proceedings, 56, pp. 71 – 83.
  9. Das, Pramod; Das, Tarun, Topologically stable measures in non-autonomous systems, Communications of the Korean Mathematical Society, 35 (1), pp. 287 – 300.
    DOI: https://doi.org/10.4134/CKMS.c180538
  10. Dinh, Hai Q.; Gaur, Atul; Gupta, Indivar; Singh, Abhay K.; Singh, Manoj Kumar; Tansuchat, Roengchai, Hamming distance of repeated-root constacyclic codes of length 2 ps over Fpm+uFpm, Applicable Algebra in Engineering, Communications and Computing, 31 (3-4), pp. 291 – 305.
    DOI: https://doi.org/10.1007/s00200-020-00432-0
  11. Dinh, Hai Q.; Gaur, Atul; Singh, Abhay K.; Singh, Manoj Kumar; Yamaka, W., B-Symbol Distance of Constacylic Codes of Length ps over Fpm + uFpm, IEEE Access, 8, art. no. 9057447, pp. 67330 – 67341.
    DOI: https://doi.org/10.1109/ACCESS.2020.2985714
  12. Gupta, Purnima; Goyal, Alka; Jain, Ranjana, Independent point-set dominating sets in graphs, AKCE International Journal of Graphs and Combinatorics, 17 (1), pp. 229 – 241.
    DOI: https://doi.org/10.1016/j.akcej.2019.08.001
  13. Gupta, Ved Prakash; Jain, Ranjana, On Banach space projective tensor product of C -algebras, Banach Journal of Mathematical Analysis, 14 (2), pp. 524 – 538.
    DOI: https://doi.org/10.1007/s43037-019-00006-4
  14. Gupta, Ved Prakash; Jain, Ranjana; Talwar, Bharat, On closed Lie ideals of certain tensor products of C-algebras II, Mathematische Nachrichten, 293 (1), pp. 101 – 114.
    DOI: https://doi.org/10.1002/mana.201800496
  15. Jain, Ranjana, Automorphisms of the Banach space projective tensor product of C -algebras, Archiv der Mathematik, 114 (6), pp. 677 – 686.
    DOI: https://doi.org/10.1007/s00013-020-01433-8
  16. Jyoti; Vashisht, Lalit K., On matrix-valued wave packet frames in L2(Rd, Cs×r), Analysis and Mathematical Physics, 10 (4), art. no. 66.
    DOI: https://doi.org/10.1007/s13324-020-00417-9
  17. Kansal, Arpit; Kumar, Ajay; Rajpal, Vandana, Inductive limit in the category of TRO, Annals of Functional Analysis, 11 (3), pp. 748 – 760.
    DOI: https://doi.org/10.1007/s43034-020-00052-2
  18. Khan, Abdul Gaffar; Das, Pramod Kumar; Das, Tarun, Pointwise Dynamics Under Orbital Convergence, Bulletin of the Brazilian Mathematical Society, 51 (4), pp. 1001 – 1016.
    DOI: https://doi.org/10.1007/s00574-019-00178-5
  19. Khapra, Divya; Patel, Arvind, Shock wave structure in non-ideal dilute gases under variable Prandtl number, Shock Waves, 30 (6), pp. 585 – 602.
    DOI: https://doi.org/10.1007/s00193-020-00972-x
  20. Kharbanda, Harsha; Kumar, Sachin, Chaos detection and optimal control in a cannibalistic prey-predator system with harvesting, International Journal of Bifurcation and Chaos, 30 (12), art. no. 2050171.
    DOI: https://doi.org/10.1142/S0218127420501710
  21. Kumar, Abhay; Srivastava, Sachi, Supercyclicity criteria for C -semigroups, Advances in Operator Theory, 5 (4), pp. 1646 – 1666.
    DOI: https://doi.org/10.1007/s43036-020-00073-7
  22. Kumar, Dharmendra; Kumar, Sachin, Some More Solutions of Caudrey–Dodd–Gibbon Equation Using Optimal System of Lie Symmetries, International Journal of Applied and Computational Mathematics, 6 (4), art. no. 125.
    DOI: https://doi.org/10.1007/s40819-020-00882-7
  23. Kumar, Dharmendra; Kumar, Sachin, Solitary wave solutions of pZK equation using Lie point symmetries, European Physical Journal Plus, 135 (2), art. no. 162.
    DOI: https://doi.org/10.1140/epjp/s13360-020-00218-w
  24. Kumar, Dharmendra; Sinha, Kalyan B.; Srivastava, Sachi, Stability of the Markov (conservativity) property under perturbations, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 23 (2), art. no. 2050009.
    DOI: https://doi.org/10.1142/S0219025720500095
  25. Kumar, Rahul; Gaur, Atul, A note on λ-domains and ∆-domains, Bulletin of the Belgian Mathematical Society – Simon Stevin, 27 (4), pp. 499 – 508.
    DOI: https://doi.org/10.36045/J.BBMS.190718
  26. Kumar, Rahul; Gaur, Atul, Avoidance Principle and Intersection Property for a Class of Ring, Czechoslovak Mathematical Journal, 70 (4), pp. 1191 – 1196.
    DOI: https://doi.org/10.21136/CMJ.2020.0360-19
  27. Kumar, Rahul; Gaur, Atul, Maximal non Valuation Domains in an Integral Domain, Czechoslovak Mathematical Journal, 70 (4), pp. 1019 – 1032.
    DOI: https://doi.org/10.21136/CMJ.2020.0098-19
  28. Kumar, Rahul; Gaur, Atul, Maximal Non λ-Subrings, Czechoslovak Mathematical Journal, 70 (2), pp. 323 – 337.
    DOI: https://doi.org/10.21136/CMJ.2019.0298-18
  29. Kumar, Rahul; Gaur, Atul, Three open questions on residually small rings, Rocky Mountain Journal of Mathematics, 50 (1), pp. 177 – 180.
    DOI: https://doi.org/10.1216/RMJ.2020.50.177
  30. Kumar, Sachin; Kumar, Amit, Dynamical structures of solitons and some new types of exact solutions for the (2+1)-dimensional DJKM equation using Lie symmetry analysis, Modern Physics Letters B, 34 (supp01), art. no. 2150015.
    DOI: https://doi.org/10.1142/S0217984921500159
  31. Kumar, Sachin; Kumar, Amit; Kharbanda, Harsha, Lie symmetry analysis and generalized invariant solutions of (2+1)-dimensional dispersive long wave (DLW) equations, Physica Scripta, 95 (6), art. no. 065207.
    DOI: https://doi.org/10.1088/1402-4896/ab7f48
  32. Kumar, Sachin; Kumar, Amit; Wazwaz, Abdul-Majid, New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method, European Physical Journal Plus, 135 (11), art. no. 870. 
    DOI: https://doi.org/10.1140/epjp/s13360-020-00883-x
  33. Kumar, Sachin; Kumar, Mukesh; Kumar, Dharmendra, Computational soliton solutions to (2 + 1) -dimensional Pavlov equation using Lie symmetry approach, Pramana – Journal of Physics, 94 (1), art. no. 28.
    DOI: https://doi.org/10.1007/s12043-019-1894-0
  34. Kumar, Sachin; Niwas, Monika; Wazwaz, Abdul-Majid, Lie symmetry analysis, exact analytical solutions and dynamics of solitons for (2 + 1)-dimensional NNV equations, Physica Scripta, 95 (9), art. no. 095204.
    DOI: https://doi.org/10.1088/1402-4896/aba5ae
  35. Kumar, Sachin; Rani, Setu, Lie symmetry reductions and dynamics of soliton solutions of (2 + 1)-dimensional Pavlov equation, Pramana – Journal of Physics, 94 (1), art. no. 116.
    DOI: https://doi.org/10.1007/s12043-020-01987-w
  36. Kumar, Vineesh; Patel, Arvind, Construction of the soliton solutions and modulation instability analysis for the Mel’nikov system, Chaos, Solitons and Fractals, 140, art. no. 110159.
    DOI: https://doi.org/10.1016/j.chaos.2020.110159
  37. Madaan, Vibha; Kumar, Ajay; Ravichandran, V., Radii of Starlikeness and Convexity of Some Entire Functions, Bulletin of the Malaysian Mathematical Sciences Society, 43 (6), pp. 4335 – 4359.
    DOI: https://doi.org/10.1007/s40840-020-00925-8
  38. Rai, Pratima; Sharma, Kapil K., Numerical approximation for a class of singularly perturbed delay differential equations with boundary and interior layer(s), Numerical Algorithms, 85 (1), pp. 305 – 328.
    DOI: https://doi.org/10.1007/s11075-019-00815-6
  39. Salman, Mohammad; Das, Ruchi, Sensitivity and Property P in Non-Autonomous Systems, Mediterranean Journal of Mathematics, 17 (4), art. no. 128.
    DOI: https://doi.org/10.1007/s00009-020-01552-0
  40. Salman, Mohammad; Das, Ruchi, Specification properties for non-autonomous discrete systems, Topological Methods in Nonlinear Analysis, 55 (2), pp. 475 – 491.
    DOI: https://doi.org/10.12775/TMNA.2020.006
  41. Salman, Mohammad; Das, Ruchi, Multi-transitivity in non-autonomous discrete systems, Topology and its Applications, 278, art. no. 107237.
    DOI: https://doi.org/10.1016/j.topol.2020.107237
  42. Shah, Sarswati; Singh, Randheer, Imploding shocks in real reacting gases with dust particles,  Journal of Mathematical Physics, 61 (3), art. no. 033506.
    DOI: https://doi.org/10.1063/1.5142327
  43. Shah, Sejal; Das, Tarun; Das, Ruchi, Distributional Chaos on Uniform Spaces, Qualitative Theory of Dynamical Systems, 19 (1), art. no. 4.
    DOI: https://doi.org/10.1007/s12346-020-00344-x
  44. Thakur, Rahul; Das, Ruchi, Transitivity and sensitivity of iterated function systems via Furstenberg families, Aequationes Mathematicae, 94 (6), pp. 1123 – 1140, Cited 1 times.
    DOI: https://doi.org/10.1007/s00010-020-00757-8
  45. Thakur, Rahul; Das, Ruchi, Strongly Ruelle-Takens, strongly Auslander-Yorke and Poincaré chaos on semiflows, Communications in Nonlinear Science and Numerical Simulation, 81, art. no. 105018.
    DOI: https://doi.org/10.1016/j.cnsns.2019.105018
  46. Thakur, Rahul; Das, Ruchi, Multi-sensitivity with respect to a vector for semiflows, Semigroup Forum, 101 (2), pp. 452 – 464.
    DOI: https://doi.org/10.1007/s00233-020-10125-2
  47. Vasisht, Radhika; Das, Ruchi, Furstenberg families and transitivity in non-autonomous systems, Asian-European Journal of Mathematics, 13 (1), art. no. 2050029.
    DOI: https://doi.org/10.1142/S1793557120500291
  48. Yadav, Swati; Rai, Pratima, A higher order numerical scheme for singularly perturbed parabolic turning point problems exhibiting twin boundary layers, Applied Mathematics and Computation, 376, art. no. 125095.
    DOI: https://doi.org/10.1016/j.amc.2020.125095
  49. Yadav, Swati; Rai, Pratima; Sharma, Kapil K., A higher order uniformly convergent method for singularly perturbed parabolic turning point problems, Numerical Methods for Partial Differential Equations, 36 (2), pp. 342 – 368.
    DOI: https://doi.org/10.1002/num.22431

©2024 Department of Mathematics, University of Delhi