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I. Fouries Series

NOTATION.
We write T for the unit circle in the complex plane and
identify it with [0,2π) with addition modulo 2π.

Functions defined on T will be thought of as 2π-periodic
functions on R. For a function in L1(T), its Fourier
coefficients are given by:

f̂ (n) =
1

2π

∫ 2π

0
f (t)e−intdt ,

and the Fourier Series of f is written as:∑
n∈Z

f̂ (n)eint
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A fundamental question in Harmonic Analysis is about the
Convergence of the Fourier series.

Consider the partial sums of the Fourier Series of an
integrable function f on the torus T :

SN f (t) =
N∑
−N

f̂ (j)eijt

These are the symmetric partial sums. Observe that for
each N, SN defines a multiplier operator, given by

ŜN f (k) = χ[−N,N](k)f̂ (k)

.
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In this talk we will ask whether such partial sums
converge in the norm of the spaces Lp(T), 1 ≤ p <∞,
and also in higher dimensions, i.e for the spaces Lp(Td ).

In one dimension the answer is No, for p = 1 and for
p =∞, and Yes for all 1 < p <∞. For higher dimensions,
there is another story!

It turns out that by a simple transference argument, we
can pass to the corresponding problem in the setting of
the real line R
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Given a function in L1(R), its Fourier Transform is given
by:

f̂ (ξ) =

∫
R

f (x)e−iξxdx

and the inversion formula:

f (x) ∼
∫
R

f̂ (ξ)eiξxdξ

We will talk about the convergence of the partial integrals:

SN f (x) =

∫ N

−N
f̂ (ξ)eiξxdξ
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Consider the multiplier given by φ(ξ) = −isgn(ξ) which
defines the Hilbert transform given by
(̂Hf )(ξ) = −isgn(ξ)f̂ (ξ).

It is well known (F. and M. Riesz Theorem) that this
operator is bounded on Lp(R),1 < p <∞.

We see easily that the partial integral operator is given by

SN = MNHM−N −M−NHMN

where MN is the modulation operator MN f (t) = eiNt f (t).

It folllows that the operators {SN} are uniformly bounded.
We conclude that for 1 < p <∞, norm convergence of
the Fourier series holds.
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Multiple Fourier Series

Consider now integrable functions on the d-torus Td . For
such functions, the Fourier Series is a multiple Fourier
series:

f ∼
∑
k∈Zd

f̂ (k)eik.t

where k = (k1, k2, ..., kd ) and t = (t1, t2, ..., td ).

Now partial sums can be defined in several ways. Two
natural ways are by taking partial sums over squares, and
over spheres.

Shobha Madan Indian Institute of Technology, Kanpur



We write

DN f (t) =
∑
|k|≤N

f̂ (k)eik.t

where |k| = max(|k1|, |k2|, ..., |kd |), and

SR =
∑
‖k‖≤R

f̂ (k)eik.t

where ‖k‖ = (k2
1 + k2

2 + ... + k2
d )1/2, respectively.

Once again, by a transference we can pass to multiplier
operators on Lp(Rd ).
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Square summability

As before, in order to prove that the square sums of the
Fourier series converge in norm, we need to prove the
uniform boundedness of the multiplier operators DN , given
by

(DN f )̂(ξ) = χQN (ξ)f̂ (ξ),

where QN =
∏N

1 [−N,N].

By a dilation argument, we see easily that ‖DN‖op are
independent of N. Hence we need only look at one
operator, for N = 1, i.e. the operator D1.
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We will restrict ourselves to d = 2.
Now, the multiplier D1 is a composition of four multipliers
corresponding to the indicator functions of four
half-planes in R2. Specifically, let

E1 = {x ∈ R2 : (x − (1,0)).(−1,0) ≥ 0}
E2 = {x ∈ R2 : (x − (−1,0)).(1,0) ≥ 0}
E3 = {x ∈ R2 : (x − (0,1)).(0,−1) ≥ 0}
E4 = {x ∈ R2 : (x − (0,−1)).(0,10) ≥ 0}

Then
D1 = TχE1

◦ TχE2
◦ TχE3

◦ TχE4
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Therefore to prove the boundedness of D1, it is enough to
prove:

Theorem (Half Plane Multiplier)

Let x0 ∈ R2, and let v ∈ R2 be a unit vector. Let

Ex0,v = {x ∈ R2 : (x − x0).v ≥ 0}.

Then the operator defined for f ∈ S, as

f −→ Sx0,v f = (χEx0,v
f̂ )̌

is bounded on Lp(R2),1 < p <∞, i.e. there exists a
constant Cp > 0 such that

‖Sx0,v f‖ ≤ Cp‖f‖p
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Spherical Summability

This theorem is easy to prove simply by using
the one dimensional result.
Clearly, we can also get Polygonal summability,
by taking regular polynomials of any number of
sides. As the number of sides increase, so will
the norm of the operator, so for spherical
summation, the limiting process of
approximating a disc by such polynomials does
not converge.
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To overcome this difficulty, Yves Meyer found an
interesting approximation to the half-plane multiplier via
large discs. The idea of the proof of Meyer’s lemma is to
use a nice approximation of a half plane by dilated discs:
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Yves Meyer (unpublished) proved the following
vector-valued inequality for a sequence of half-plane
operators:

Lemma (Meyer)

Suppose the ball multiplier TB given by (TBf )̂ = (χB f̂ )∨ is
bounded on Lp. Let ν1, ν2, ..., νj , ... be a sequence of unit
vectors in R2 and let Hj be the corresponding half-planes
{x ∈ R2 : x .νj ≥ 0}, and SHj the corresponding multiplier
operators, then

‖(
∑

j

|SHj (fj)|
2)1/2‖p ≤ Cp‖(

∑
j

|(fj)|2)1/2‖p.
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Remark. For a single bounded operator T , a
vector-valued inequality of the form

‖(
∑

j

|T (fj)|2)1/2‖p ≤ Cp‖(
∑

j

|(fj)|2)1/2‖p.

is well-known. In Meyer’s theorem, there is a sequence of
operators also. The point is that each of these operators
is the limit of a sequence of operators composed of
suitable dilations and translations of a single operator, S1,
the ball multiplier.
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Then Charles Fefferman constructed a counterexample
by bringing in the construction of the Kakeya-Besicovitch
set set. So we need to go back half a century... to a
seemingly unrelated theme...
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Kakeya Needle Problem; Besicovotch Set

In 1917, a problem was posed by the Japanese
Mathematician, Soichi Kakeya:

In the class of figures in which a segment of length 1 can
be turned around through 360 degrees, remaining always
within the figure, which one has the smallest area?
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Kakeya’s problem, of course, did not reach Russia, where,
in 1920, Abram Samoilovitch Besicovitch posed a twin
problem:

What is the minimum planar measure of a measurable set
which is the union of segments of all directions, each of
length 1.

In 1928 Besicovitch gave an unexpected and brilliant
construction ...
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We will consider a construction which is a modification of
the construction due to Besicovitch. This modified
construction is appropriate for Fefferman’s construction.

Begin with an equilateral triangle ABC (with small area),
and let it "sprout":
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Next, we let each of the sprouted triangles
sprout again and again, and so on...
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We first compute the area added at each step:
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We compute the area of the sprouted set after k
steps of construction.

Given an ε > 0, we start with base of the initial
triangle, b = ε, and height h0 = ε. At the j th
stage of sprouting, let hj = ε(1 + 1

2 + 1
3 + ...+ 1

j+1).

At step 1, the triangle has two sprouts Λ1 and
Λ2, and at the k th step, there are 2k sprouts,
namely {Λr1,r2,...,rk : rj = 1 or 2}. Let

Eε(k) = ∪Λr1,r2,...,rk
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Then

|Eε(k)| = |∆ABC|+ areas of arms of all sprouts

=
1
2
ε2 +

k∑
j=1

2j 2
−(j−1)ε

2
(hj − hj−1)2

2hj − hj−1

≤ 1
2
ε2 + ε2

k∑
j=1

1
(j + 1)2

≤ Cε2.

Hence, we have a Kakeya set of measure as small as we
like!
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Fefferman took the Kakeya-Besicovitch construction and
looked at:
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He considers long disjoint rectangles Rj , oriented along
the longer sides, so that the adjacent equal rectangles R′J
overlap in the "Kakeya sense".
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An elementary computation of the Hilbert transform:

Exercise. Let J = [−a,a] and J ′ = {x : a ≤ |x | ≤ 3a},
and suppose φ(ξ) = χ[0,∞)(ξ), then

|Tφ(χJ)| ≥ 1
10
χJ′

As a consequence for each rectangle R we get,

|SH(χR)| ≥ 1
10
χR′
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Let δ > 0 be given, We construct upto a level k , so that
k + 2 > e1/δ. Then

|E(k)| ≤ δ
∑

j

|Rj |
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Next, an easy computation shows that

|R′j ∩ E(k)| ≥ 1
12
|Rj |
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Let νj be a unit vector parallel to the long side of Rj , and
let Hj be the corresponding half-plane. Recall Meyer’s
inequality:

‖(
∑

j

|SHj (fj)|
2)1/2‖p ≤ Cp‖(

∑
j

|(fj)|2)1/2‖p.

On the one hand,∫
E(k)

∑
j

|SHj (χRj )|
2dx ≥

∑
j

∫
E(k)

(
1
10
χR′

j
(x))2dx

=
1

100

∑
|E(k) ∩ R′j |

≥ 1
1200

∑
j

|Rj |
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and on the other hand, using Hölder’s inequality,∫
E(k)

∑
j

|SHj (χRj )|
2dx ≤ |E(k)|(p−2)/2‖(

∑
j

(|SHj (χRj )|
2)1/2‖2

p

≤ C2
p |E(k)|(p−2)/2‖(

∑
j

|χRj (x)|2)1/2‖2
p

= C2
p |E(k)|(p−2)/2(

∑
j

|Rj |)2/p

≤ C2
pδ

(p−2)/2
∑

j

|Rj |
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But this means that

1
1200

∑
j

|Rj | ≤ C2
pδ

(p−2)/2
∑

j

|Rj |

We may let p > 2, since the Lp and Lp′ multipliers are the
same for, 1/p + 1/p′ = 1

We get a contadiction by taking δ small.
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Bochner-Riesz Means

Since there is a sharp discontinuity in the Disc multiplier,
we now consider family of multiplier operators, called the
Bochner-Riesz Means, which attempt to smooth out this
sharp discontinuitly. For λ > 0, define an oprator Tλ given
by

T̂λf (ξ) = (1− |ξ|2)λ+

For λ = 0, we obtain the Disc Multiplier, and for λ > 1, the
multipliers arise from convolution by integrable functions,
hence are bounded operators.

So we restrict to 0 < λ < 1.
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Known Results, Bochner Riesz Conjecture

If λ > n−1
2 , then Tλ is bounded on all Lp.

If
∣∣∣1

p −
1
2

∣∣∣ ≥ 2λ+1
2n , then Tλ is unbounded for all p.

Tλ is bounded on Lp for
∣∣∣1

p −
1
2

∣∣∣ < λ
n−1 .

If λ > n−1
2(n+1) , then Tλ is bounded on Lp for∣∣∣1

p −
1
2

∣∣∣ < 2λ+1
2n .
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Bochner-Riesz Conjecture
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Kakeya Conjecture

We know that a Kakeya set can have arbitrarily small
area. But in some sense the set is quite ’substantial. So
perhaps its measure is not the correct parameter to look
at its size. A more appropriate measure of its size could
be its Hausdorff or Minkowski dimension.
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Hausdorff Dimension

Let S ⊂ R and d ∈ [0,∞), the d-dimensional Hausdorff
measure of S is defined by

Cd
H(S) := inf

{∑
i

r d
i : S ⊂ ∪iB(ri)

}
.

The Hausdorff dimension of S is defined by

H(S) := inf{d ≥ 0 : Cd
H(S) = 0}.

and then we also have

H(S) := sup{d ≥ 0 : Cd
H(S) =∞}.
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Minkowski or Box Dimension

Suppose that N(ε) is the number of boxes of side length ε
required to cover a set S. Then the box-counting
dimension is defined as:

dimbox(S) := lim
ε→0

log N(ε)

log(1/ε)
.

In general
H(S) ≤ dimbox(S) ≤ n
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For planar sets, it was proved that a Kakeya set must
have full Hausdorff dimension, i.e. 2.

For n > 2, the following conjecture is still open: The

Hausdorff dimension of a Kakeya set in Rn is
n.
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Bochner-Riesz Conjecture implies Kakeya
Conjecture. and conversely, the solution of

Kakeya Conjecture will imply progress in the
Bochner-Riesz conjecture.

[T. Tao, N. Katz. I. Laba, J. Bourgain, T. Wolff...]
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