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Introduction to Dynamical Systems...

Dynamical systems theory attempts to understand, or at least describe,
the changes over time that occur in physical and artificial “systems”.

Examples of such systems include:

The solar system (sun and planets),

The weather,

The motion of billiard balls on a billiard table,

Sugar dissolving in a cup of coffee,

The growth of crystals,

The stock market,

The formation of traffic jams,

The behaviour of the decimal digits of the square root of 2;

and so on.
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Describing Dynamical Systems Mathematically...

A dynamical system consists of two parts: the phase space and the
dynamics.

The phase space of a dynamical system is the collection of all
possible world-states of the system in question and the dynamics is a
function mapping world states into world states.

For example, if we are studying planetary motion then a world-state
might consist of the location and velocities of all planets and stars in
some neighborhood of the solar system; and the dynamics would be
derived from the laws of gravity, which, given the position and
masses of the planets, determine the forces acting on them.

Once an initial world-state is chosen, applying the rule again and
again, the dynamics determines the world-state at all future times.
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Introduction to Dynamical Systems...

Lorenz attractor is a set of chaotic solutions of the Lorenz dynamical
system of ordinary differential equations which when plotted resembles a
butterfly or figure eight.
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Introduction to Dynamical Systems...

The concept of dynamical system has its origin in Newtonian
mechanics which inspired the work of mathematicians like Euler,
Lagrange, Hamilton and Poincaré.

The name of the subject, “DYNAMICAL SYSTEMS”, came from
the title of classical book: G.D. Birkhoff, Dynamical Systems. Amer.
Math. Soc. Colloq. Publ. 9. American Mathematical Society, New
York (1927), 295 pp.

Many areas of biology, physics, economics and applied mathematics
involve a detailed analysis of dynamical systems based on the
particular laws governing their change.
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Founder of Modern Dynamical Systems...

H. Poincaré is a founder of the modern theory of dynamical systems.

The work of Poincaré was a great influence to the present state of
the subject since it led to a change in the motivation from the
quantitative to the qualitative and geometrical study of such
mechanical systems and more general systems of nonlinear
differential equations.

This change was a key step for the development of the modern
theory of dynamical systems during the 20th century.
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Dynamical Property

By a topological dynamical system we mean a pair (X, f), where X
is a topological space and f is either a continuous self map or a
homeomorphism on X.

If (X, f) and (Y, g) are two topological dynamical systems and
h : X → Y is a homeomorphism such that h ◦ f = g ◦ h then (X, f)
and (Y, g) are called topologically conjugate.

An orbit of a point x ∈ X, denoted by Of (x), is the set
{x, f(x), f2(x), . . . }, if f is continuous and is the set
{. . . , f−2(x), f−1(x), x, f(x), f2(x), . . . }, if f is a homeomorphism.

In this case dynamics of f and g are regarded as same in topological
sense because there is a homeomorphic correspondence between
orbits of f and orbits of g.

A property of continuous maps which is preserved under topological
conjugacy is called a dynamical property. For example expansivity,
shadowing, transitivity, mixing, minimality, chaos etc.

We discuss various dynamical properties of maps on topological
spaces.
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Expansive Homeomorphisms

Expansivity (W.R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc., 1950)

Let (X, d) be a metric space. A homeomorphism f : X → X is called
expansive provided there exists a real number δ > 0 such that whenever
x, y ∈ X with x 6= y then there exists an integer n (depending on x, y)
satisfying d(fn(x), fn(y)) > δ; δ is called an expansive constant for f .

Expansiveness is independent of the choice of metric for compact
metric spaces but not for non-compact metric spaces.
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Expansive Homeomorphisms...

Applications

Expansive homeomorphisms have wide applications in

Topological Dynamics

Ergodic Theory

Continuum Theory

Symbolic Dynamics, etc.

Examples

Examples of Expansive Homeomorphisms include

Linear maps on Rn with no eigen values of modulus 1.

Left/right shift operator on the subspace X =
{

1
n , 1−

1
n : n ∈ N

}
of the real line.
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Spaces admitting expansive homeomorphisms

Spaces which admit expansive homeomorphisms include

Dyadic solenoid
Plykin Attractor
Euclidean n−space Rn

A compact metric space with finitely many limit points
Cantor set
A symbolic flow
An n−dimensional Torus with n > 1
An orientable surface M 6= S2

An open n−ball with n ≥ 2
Quasi–Anosov diffeomorphisms and pseudo–Anosov diffeomorphisms
on compact manifolds

C. Mouron, Topology Proceedings, 2003

There exists a 2-dimensional planar continuum that admits an expansive
homeomorphism and separates the plane.

A Journey with Dynamical Properties in Dynamical Systems



Spaces admitting expansive homeomorphisms

Spaces which admit expansive homeomorphisms include

Dyadic solenoid

Plykin Attractor
Euclidean n−space Rn

A compact metric space with finitely many limit points
Cantor set
A symbolic flow
An n−dimensional Torus with n > 1
An orientable surface M 6= S2

An open n−ball with n ≥ 2
Quasi–Anosov diffeomorphisms and pseudo–Anosov diffeomorphisms
on compact manifolds

C. Mouron, Topology Proceedings, 2003

There exists a 2-dimensional planar continuum that admits an expansive
homeomorphism and separates the plane.

A Journey with Dynamical Properties in Dynamical Systems



Spaces admitting expansive homeomorphisms

Spaces which admit expansive homeomorphisms include

Dyadic solenoid
Plykin Attractor

Euclidean n−space Rn

A compact metric space with finitely many limit points
Cantor set
A symbolic flow
An n−dimensional Torus with n > 1
An orientable surface M 6= S2

An open n−ball with n ≥ 2
Quasi–Anosov diffeomorphisms and pseudo–Anosov diffeomorphisms
on compact manifolds

C. Mouron, Topology Proceedings, 2003

There exists a 2-dimensional planar continuum that admits an expansive
homeomorphism and separates the plane.

A Journey with Dynamical Properties in Dynamical Systems



Spaces admitting expansive homeomorphisms

Spaces which admit expansive homeomorphisms include

Dyadic solenoid
Plykin Attractor
Euclidean n−space Rn

A compact metric space with finitely many limit points
Cantor set
A symbolic flow
An n−dimensional Torus with n > 1
An orientable surface M 6= S2

An open n−ball with n ≥ 2
Quasi–Anosov diffeomorphisms and pseudo–Anosov diffeomorphisms
on compact manifolds

C. Mouron, Topology Proceedings, 2003

There exists a 2-dimensional planar continuum that admits an expansive
homeomorphism and separates the plane.

A Journey with Dynamical Properties in Dynamical Systems



Spaces admitting expansive homeomorphisms

Spaces which admit expansive homeomorphisms include

Dyadic solenoid
Plykin Attractor
Euclidean n−space Rn

A compact metric space with finitely many limit points

Cantor set
A symbolic flow
An n−dimensional Torus with n > 1
An orientable surface M 6= S2

An open n−ball with n ≥ 2
Quasi–Anosov diffeomorphisms and pseudo–Anosov diffeomorphisms
on compact manifolds

C. Mouron, Topology Proceedings, 2003

There exists a 2-dimensional planar continuum that admits an expansive
homeomorphism and separates the plane.

A Journey with Dynamical Properties in Dynamical Systems



Spaces admitting expansive homeomorphisms

Spaces which admit expansive homeomorphisms include

Dyadic solenoid
Plykin Attractor
Euclidean n−space Rn

A compact metric space with finitely many limit points
Cantor set

A symbolic flow
An n−dimensional Torus with n > 1
An orientable surface M 6= S2

An open n−ball with n ≥ 2
Quasi–Anosov diffeomorphisms and pseudo–Anosov diffeomorphisms
on compact manifolds

C. Mouron, Topology Proceedings, 2003

There exists a 2-dimensional planar continuum that admits an expansive
homeomorphism and separates the plane.

A Journey with Dynamical Properties in Dynamical Systems



Spaces admitting expansive homeomorphisms

Spaces which admit expansive homeomorphisms include

Dyadic solenoid
Plykin Attractor
Euclidean n−space Rn

A compact metric space with finitely many limit points
Cantor set
A symbolic flow

An n−dimensional Torus with n > 1
An orientable surface M 6= S2

An open n−ball with n ≥ 2
Quasi–Anosov diffeomorphisms and pseudo–Anosov diffeomorphisms
on compact manifolds

C. Mouron, Topology Proceedings, 2003

There exists a 2-dimensional planar continuum that admits an expansive
homeomorphism and separates the plane.

A Journey with Dynamical Properties in Dynamical Systems



Spaces admitting expansive homeomorphisms

Spaces which admit expansive homeomorphisms include

Dyadic solenoid
Plykin Attractor
Euclidean n−space Rn

A compact metric space with finitely many limit points
Cantor set
A symbolic flow
An n−dimensional Torus with n > 1

An orientable surface M 6= S2

An open n−ball with n ≥ 2
Quasi–Anosov diffeomorphisms and pseudo–Anosov diffeomorphisms
on compact manifolds

C. Mouron, Topology Proceedings, 2003

There exists a 2-dimensional planar continuum that admits an expansive
homeomorphism and separates the plane.

A Journey with Dynamical Properties in Dynamical Systems



Spaces admitting expansive homeomorphisms

Spaces which admit expansive homeomorphisms include

Dyadic solenoid
Plykin Attractor
Euclidean n−space Rn

A compact metric space with finitely many limit points
Cantor set
A symbolic flow
An n−dimensional Torus with n > 1
An orientable surface M 6= S2

An open n−ball with n ≥ 2
Quasi–Anosov diffeomorphisms and pseudo–Anosov diffeomorphisms
on compact manifolds

C. Mouron, Topology Proceedings, 2003

There exists a 2-dimensional planar continuum that admits an expansive
homeomorphism and separates the plane.

A Journey with Dynamical Properties in Dynamical Systems



Spaces admitting expansive homeomorphisms

Spaces which admit expansive homeomorphisms include

Dyadic solenoid
Plykin Attractor
Euclidean n−space Rn

A compact metric space with finitely many limit points
Cantor set
A symbolic flow
An n−dimensional Torus with n > 1
An orientable surface M 6= S2

An open n−ball with n ≥ 2

Quasi–Anosov diffeomorphisms and pseudo–Anosov diffeomorphisms
on compact manifolds

C. Mouron, Topology Proceedings, 2003

There exists a 2-dimensional planar continuum that admits an expansive
homeomorphism and separates the plane.

A Journey with Dynamical Properties in Dynamical Systems



Spaces admitting expansive homeomorphisms

Spaces which admit expansive homeomorphisms include

Dyadic solenoid
Plykin Attractor
Euclidean n−space Rn

A compact metric space with finitely many limit points
Cantor set
A symbolic flow
An n−dimensional Torus with n > 1
An orientable surface M 6= S2

An open n−ball with n ≥ 2
Quasi–Anosov diffeomorphisms and pseudo–Anosov diffeomorphisms
on compact manifolds

C. Mouron, Topology Proceedings, 2003

There exists a 2-dimensional planar continuum that admits an expansive
homeomorphism and separates the plane.

A Journey with Dynamical Properties in Dynamical Systems



Spaces admitting expansive homeomorphisms

Spaces which admit expansive homeomorphisms include

Dyadic solenoid
Plykin Attractor
Euclidean n−space Rn

A compact metric space with finitely many limit points
Cantor set
A symbolic flow
An n−dimensional Torus with n > 1
An orientable surface M 6= S2

An open n−ball with n ≥ 2
Quasi–Anosov diffeomorphisms and pseudo–Anosov diffeomorphisms
on compact manifolds

C. Mouron, Topology Proceedings, 2003

There exists a 2-dimensional planar continuum that admits an expansive
homeomorphism and separates the plane.

A Journey with Dynamical Properties in Dynamical Systems



Spaces not admitting expansive homeomorphisms

Spaces which do not admit expansive homeomorphisms include

An arc
A simple closed curve
A closed 2-cell
2-sphere S2

Projective plane RP 1

Peano continuum
Infinite dimensional compact metric spaces
Klein’s bottle
Susilian continua
Tree like continua
Dendroids
One dimensional compact ANR’s
One dimensional 2–separating plane continuum
[1, ωω], where ω denotes first countable ordinal

Mane, Trans. Amer. Math. Soc., 1979

Let f be an expansive homeomorphism on a compact metric space X
then the topological dimension of X is finite.

A Journey with Dynamical Properties in Dynamical Systems



Spaces not admitting expansive homeomorphisms

Spaces which do not admit expansive homeomorphisms include

An arc

A simple closed curve
A closed 2-cell
2-sphere S2

Projective plane RP 1

Peano continuum
Infinite dimensional compact metric spaces
Klein’s bottle
Susilian continua
Tree like continua
Dendroids
One dimensional compact ANR’s
One dimensional 2–separating plane continuum
[1, ωω], where ω denotes first countable ordinal

Mane, Trans. Amer. Math. Soc., 1979

Let f be an expansive homeomorphism on a compact metric space X
then the topological dimension of X is finite.

A Journey with Dynamical Properties in Dynamical Systems



Spaces not admitting expansive homeomorphisms

Spaces which do not admit expansive homeomorphisms include

An arc
A simple closed curve

A closed 2-cell
2-sphere S2

Projective plane RP 1

Peano continuum
Infinite dimensional compact metric spaces
Klein’s bottle
Susilian continua
Tree like continua
Dendroids
One dimensional compact ANR’s
One dimensional 2–separating plane continuum
[1, ωω], where ω denotes first countable ordinal

Mane, Trans. Amer. Math. Soc., 1979

Let f be an expansive homeomorphism on a compact metric space X
then the topological dimension of X is finite.

A Journey with Dynamical Properties in Dynamical Systems



Spaces not admitting expansive homeomorphisms

Spaces which do not admit expansive homeomorphisms include

An arc
A simple closed curve
A closed 2-cell

2-sphere S2

Projective plane RP 1

Peano continuum
Infinite dimensional compact metric spaces
Klein’s bottle
Susilian continua
Tree like continua
Dendroids
One dimensional compact ANR’s
One dimensional 2–separating plane continuum
[1, ωω], where ω denotes first countable ordinal

Mane, Trans. Amer. Math. Soc., 1979

Let f be an expansive homeomorphism on a compact metric space X
then the topological dimension of X is finite.

A Journey with Dynamical Properties in Dynamical Systems



Spaces not admitting expansive homeomorphisms

Spaces which do not admit expansive homeomorphisms include

An arc
A simple closed curve
A closed 2-cell
2-sphere S2

Projective plane RP 1

Peano continuum
Infinite dimensional compact metric spaces
Klein’s bottle
Susilian continua
Tree like continua
Dendroids
One dimensional compact ANR’s
One dimensional 2–separating plane continuum
[1, ωω], where ω denotes first countable ordinal

Mane, Trans. Amer. Math. Soc., 1979

Let f be an expansive homeomorphism on a compact metric space X
then the topological dimension of X is finite.

A Journey with Dynamical Properties in Dynamical Systems



Spaces not admitting expansive homeomorphisms

Spaces which do not admit expansive homeomorphisms include

An arc
A simple closed curve
A closed 2-cell
2-sphere S2

Projective plane RP 1

Peano continuum
Infinite dimensional compact metric spaces
Klein’s bottle
Susilian continua
Tree like continua
Dendroids
One dimensional compact ANR’s
One dimensional 2–separating plane continuum
[1, ωω], where ω denotes first countable ordinal

Mane, Trans. Amer. Math. Soc., 1979

Let f be an expansive homeomorphism on a compact metric space X
then the topological dimension of X is finite.

A Journey with Dynamical Properties in Dynamical Systems



Spaces not admitting expansive homeomorphisms

Spaces which do not admit expansive homeomorphisms include

An arc
A simple closed curve
A closed 2-cell
2-sphere S2

Projective plane RP 1

Peano continuum

Infinite dimensional compact metric spaces
Klein’s bottle
Susilian continua
Tree like continua
Dendroids
One dimensional compact ANR’s
One dimensional 2–separating plane continuum
[1, ωω], where ω denotes first countable ordinal

Mane, Trans. Amer. Math. Soc., 1979

Let f be an expansive homeomorphism on a compact metric space X
then the topological dimension of X is finite.

A Journey with Dynamical Properties in Dynamical Systems



Spaces not admitting expansive homeomorphisms

Spaces which do not admit expansive homeomorphisms include

An arc
A simple closed curve
A closed 2-cell
2-sphere S2

Projective plane RP 1

Peano continuum
Infinite dimensional compact metric spaces

Klein’s bottle
Susilian continua
Tree like continua
Dendroids
One dimensional compact ANR’s
One dimensional 2–separating plane continuum
[1, ωω], where ω denotes first countable ordinal

Mane, Trans. Amer. Math. Soc., 1979

Let f be an expansive homeomorphism on a compact metric space X
then the topological dimension of X is finite.

A Journey with Dynamical Properties in Dynamical Systems



Spaces not admitting expansive homeomorphisms

Spaces which do not admit expansive homeomorphisms include

An arc
A simple closed curve
A closed 2-cell
2-sphere S2

Projective plane RP 1

Peano continuum
Infinite dimensional compact metric spaces
Klein’s bottle

Susilian continua
Tree like continua
Dendroids
One dimensional compact ANR’s
One dimensional 2–separating plane continuum
[1, ωω], where ω denotes first countable ordinal

Mane, Trans. Amer. Math. Soc., 1979

Let f be an expansive homeomorphism on a compact metric space X
then the topological dimension of X is finite.

A Journey with Dynamical Properties in Dynamical Systems



Spaces not admitting expansive homeomorphisms

Spaces which do not admit expansive homeomorphisms include

An arc
A simple closed curve
A closed 2-cell
2-sphere S2

Projective plane RP 1

Peano continuum
Infinite dimensional compact metric spaces
Klein’s bottle
Susilian continua

Tree like continua
Dendroids
One dimensional compact ANR’s
One dimensional 2–separating plane continuum
[1, ωω], where ω denotes first countable ordinal

Mane, Trans. Amer. Math. Soc., 1979

Let f be an expansive homeomorphism on a compact metric space X
then the topological dimension of X is finite.

A Journey with Dynamical Properties in Dynamical Systems



Spaces not admitting expansive homeomorphisms

Spaces which do not admit expansive homeomorphisms include

An arc
A simple closed curve
A closed 2-cell
2-sphere S2

Projective plane RP 1

Peano continuum
Infinite dimensional compact metric spaces
Klein’s bottle
Susilian continua
Tree like continua

Dendroids
One dimensional compact ANR’s
One dimensional 2–separating plane continuum
[1, ωω], where ω denotes first countable ordinal

Mane, Trans. Amer. Math. Soc., 1979

Let f be an expansive homeomorphism on a compact metric space X
then the topological dimension of X is finite.

A Journey with Dynamical Properties in Dynamical Systems



Spaces not admitting expansive homeomorphisms

Spaces which do not admit expansive homeomorphisms include

An arc
A simple closed curve
A closed 2-cell
2-sphere S2

Projective plane RP 1

Peano continuum
Infinite dimensional compact metric spaces
Klein’s bottle
Susilian continua
Tree like continua
Dendroids

One dimensional compact ANR’s
One dimensional 2–separating plane continuum
[1, ωω], where ω denotes first countable ordinal

Mane, Trans. Amer. Math. Soc., 1979

Let f be an expansive homeomorphism on a compact metric space X
then the topological dimension of X is finite.

A Journey with Dynamical Properties in Dynamical Systems



Spaces not admitting expansive homeomorphisms

Spaces which do not admit expansive homeomorphisms include

An arc
A simple closed curve
A closed 2-cell
2-sphere S2

Projective plane RP 1

Peano continuum
Infinite dimensional compact metric spaces
Klein’s bottle
Susilian continua
Tree like continua
Dendroids
One dimensional compact ANR’s

One dimensional 2–separating plane continuum
[1, ωω], where ω denotes first countable ordinal

Mane, Trans. Amer. Math. Soc., 1979

Let f be an expansive homeomorphism on a compact metric space X
then the topological dimension of X is finite.

A Journey with Dynamical Properties in Dynamical Systems



Spaces not admitting expansive homeomorphisms

Spaces which do not admit expansive homeomorphisms include

An arc
A simple closed curve
A closed 2-cell
2-sphere S2

Projective plane RP 1

Peano continuum
Infinite dimensional compact metric spaces
Klein’s bottle
Susilian continua
Tree like continua
Dendroids
One dimensional compact ANR’s
One dimensional 2–separating plane continuum

[1, ωω], where ω denotes first countable ordinal

Mane, Trans. Amer. Math. Soc., 1979

Let f be an expansive homeomorphism on a compact metric space X
then the topological dimension of X is finite.

A Journey with Dynamical Properties in Dynamical Systems



Spaces not admitting expansive homeomorphisms

Spaces which do not admit expansive homeomorphisms include

An arc
A simple closed curve
A closed 2-cell
2-sphere S2

Projective plane RP 1

Peano continuum
Infinite dimensional compact metric spaces
Klein’s bottle
Susilian continua
Tree like continua
Dendroids
One dimensional compact ANR’s
One dimensional 2–separating plane continuum
[1, ωω], where ω denotes first countable ordinal

Mane, Trans. Amer. Math. Soc., 1979

Let f be an expansive homeomorphism on a compact metric space X
then the topological dimension of X is finite.

A Journey with Dynamical Properties in Dynamical Systems



Spaces not admitting expansive homeomorphisms

Spaces which do not admit expansive homeomorphisms include

An arc
A simple closed curve
A closed 2-cell
2-sphere S2

Projective plane RP 1

Peano continuum
Infinite dimensional compact metric spaces
Klein’s bottle
Susilian continua
Tree like continua
Dendroids
One dimensional compact ANR’s
One dimensional 2–separating plane continuum
[1, ωω], where ω denotes first countable ordinal

Mane, Trans. Amer. Math. Soc., 1979

Let f be an expansive homeomorphism on a compact metric space X
then the topological dimension of X is finite.

A Journey with Dynamical Properties in Dynamical Systems



Consider the subspace Yn, n = 1, 2, .... as shown in figure, of R2.
Observe that in each Yn all the points intersect at the point yn. Hence
removal of the point yn will disconnect Yn into n disjoint arcs. Let Y be
the union of all these Yn. As each yn has unique property, every
homeomorphism on Y will fix yn. Since such points are infinite in
number, there exists no expansive homeomorphism on Y .
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Types of problems studied

Problems regarding restriction, extension, product, composition,
fixed points, etc. have been studied in detail for expansive
homeomorphisms.

Different characterizations about Expansivity are obtained. One of
them uses concept of generators which relates Ergodic Theory and
Topological Dynamics.

Notion of ’expansiveness’ is defined and studied in various other
settings. For instance, on uniform spaces, topological groups,
topological vector spaces, Banach spaces, differentiable manifolds,
etc.

In 1993 Kato (Continuum–wise expansive homeomorphisms, Canad. J. Math. 45, 1993) has generalized
this concept by defining Continuum-wise expansive
homeomorphisms, which have been studied in detail having very
good applications in continuum theory and related areas.
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Topological Transitivity

Topological dynamics studies dynamical systems from the viewpoint
of topology of the space. The focus of topological dynamics is the
study of the behaviour of open sets under the iteration of a
continuous function.

As the function is iterated, sets move from their original location
and overlap other sets.

Topological transitivity means that for any given pair of sets, there is
an iterate of the first that overlaps the second. It guarantees that
under iteration, every set makes its way around the whole space
without avoiding any significant portion.

So, it basically requires orbit of each open subset to be dense in the
phase space.
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Definition : Topological transitivity (TT )

A dynamical system (X, f) is said to be topologically transitive if for
every pair (U, V ) of nonempty open subsets of X, there exists a positive
integer n such that fn(U) ∩ V 6= ∅.

Consequently, a topologically transitive system can not be broken
down or decomposed into two subsystems (disjoint sets with
nonempty interiors) which do not interact under the self map
defined on the phase space.

Characterization of topological transitivity

In a dynamical system (X, f), where X is a compact metric space and f
is onto, topological transitivity (TT ) is equivalent to the existence of a
dense orbit in X, i.e., there is a point x ∈ X such that orbit of x is dense
in X (DO).

A Journey with Dynamical Properties in Dynamical Systems



Definition : Topological transitivity (TT )

A dynamical system (X, f) is said to be topologically transitive if for
every pair (U, V ) of nonempty open subsets of X, there exists a positive
integer n such that fn(U) ∩ V 6= ∅.

Consequently, a topologically transitive system can not be broken
down or decomposed into two subsystems (disjoint sets with
nonempty interiors) which do not interact under the self map
defined on the phase space.

Characterization of topological transitivity

In a dynamical system (X, f), where X is a compact metric space and f
is onto, topological transitivity (TT ) is equivalent to the existence of a
dense orbit in X, i.e., there is a point x ∈ X such that orbit of x is dense
in X (DO).

A Journey with Dynamical Properties in Dynamical Systems



Definition : Topological transitivity (TT )

A dynamical system (X, f) is said to be topologically transitive if for
every pair (U, V ) of nonempty open subsets of X, there exists a positive
integer n such that fn(U) ∩ V 6= ∅.

Consequently, a topologically transitive system can not be broken
down or decomposed into two subsystems (disjoint sets with
nonempty interiors) which do not interact under the self map
defined on the phase space.

Characterization of topological transitivity

In a dynamical system (X, f), where X is a compact metric space and f
is onto, topological transitivity (TT ) is equivalent to the existence of a
dense orbit in X, i.e., there is a point x ∈ X such that orbit of x is dense
in X (DO).

A Journey with Dynamical Properties in Dynamical Systems



Remark

In general the two conditions are independent of each other which is
justified by following examples.

Example

Take X = {1/n : n ∈ N} ∪ {0} endowed with the usual metric and
f : X → X defined by f(0) = 0 and f(1/n) = 1/(n+ 1), n ∈ N. Then
(X, f) satisfies (DO) but not (TT ).

Example

Take I = [0, 1] and the standard tent map g : I → I

g(x) =

{
2x if 0 6 x < 1/2,
2− 2x if 1/2 6 x 6 1.

Let X be the set of all periodic points of g and f = g|X . Then X is
infinite and every orbit is finite in X thus the system (X, f) does not
satisfy the condition (DO) but the condition (TT ) is fulfilled.
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Remark

In a dynamical system if fn (f ◦ f ◦ · · · ◦ f (n-times)) is topologically
transitive for some n ∈ N then trivially f is topologically transitive. The
following example shows that the converse is not true.

Example

Take X = [0, 2] and f : X → X defined by

f(x) =

 2x+ 1 if 0 6 x 6 1/2,
−2x+ 3 if 1/2 6 x 6 1,
−x+ 2 if 1 6 x 6 2.

Then f is topologically transitive but f2 is not. Also f × f is not
transitive.

This motivates the concept of total transitivity in which every iterate
of f becomes topologically transitive.
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Total Transitivity and Mixing

Definition : Total transitivity

A dynamical system (X, f) is said to be totally transitive if fn, n ∈ N,
are topologically transitive.

There are certain notions which are strictly stronger than transitivity
and total transitivity is one of them. Another concept stronger than
transitivity is strongly mixing which says that every open set in X
after a finite iteration under the map f spreads everywhere.

Definition : Strongly mixing

A dynamical system (X, f) is said to be strongly mixing (or just mixing)
if for every pair (U, V ) of nonempty open subsets of X there exists
n0 ∈ N such that fn(U) ∩ V 6= ∅, for all n > n0.
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If (X ×X, f × f) is topologically transitive then so is (X, f).
Otherway we have already seen that the transitivity of (X, f) need
not imply the transitivity of (X ×X, f × f). This motivates a new
dynamical property, namely weakly mixing.

Definition : Weakly mixing

If (X ×X, f × f) is topologically transitive then we say that (X, f) is
weakly mixing.

Strongly mixing =⇒ Weakly mixing

If a dynamical system (X, f) is strongly mixing then it is weakly mixing.

Weakly mixing =⇒ Total transitivity

A weakly mixing dynamical system (X, f) is totally transitive.
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Implications

So in general we have the following implications:

mixing =⇒ weakly mixing =⇒ totally transitive =⇒ transitive.

Remark

We have already seen that transitivity need not imply total transitivity.
Converse of each of the other two implications is not true in general is
supported by following examples.

Example

Consider the rotation on circle given by f(θ) = θ + λ, where λ is an
irrational number. Then (S1, f) is totally transitive but not weakly
mixing.

Example

Dynamical systems which are weakly mixing but not mixing have been
constructed in Toeplitz flows.
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Next result gives a sufficient condition under which total transitivity
implies weakly mixing.

Sufficient condition for total transitivity to imply weakly mixing

A totally transitive dynamical system (X, f) with dense set of periodic
points is weakly mixing.

The following result gives a sufficient condition under which weakly
mixing implies strongly mixing.

Sufficient condition for total transitivity to imply strongly mixing

A totally transitive dynamical system (X, f), where X is compact with
an open interval J (i.e. J is homeomorphic to (0, 1)) having dense set of
periodic points is strongly mixing.
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The following diagram gives a complete picture of their interrelations:

Diagram

Mixing - Weakly mixing

�
�

��	

Totally Transitive
�
�
���

C1

@
@
@@R@

@
@@I

C2

- Transitive

By C1 and C2 we mean:

C1: For any metric space X, f : X → X continuous with
Per(f) = X.
C2: For any compact metric space with an open interval, f : X → X
continuous with Per(f) = X.
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Pseudo Orbit Tracing Property

The pseudo-orbit tracing property (POTP), introduced initially by
Anosov and Bowen, is an important concept in the study of
differentiable dynamics. Here, we consider it in a purely topological
setting.

Definition : Pseudo orbit tracing property (or shadowing property)

A sequence of points {xi : i ∈ Z} of a metric space X is called a
δ-pseudo orbit of a homeomorphism f if d(f(xi), xi+1) < δ for i ∈ Z.
Given ε > 0 a δ-pseudo orbit {xi} is said to be ε-traced by a point
x ∈ X if d(f i(x), xi) < ε for every i ∈ Z.
We say f has the pseudo orbit tracing property (abbrev. POTP ) if for
every ε > 0 there is δ > 0 such that every δ-pseudo orbit of f can be
ε-traced by some point of X.

For compact spaces this property is independent of the compatible
metrics used.
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Theorem

Let f be a linear map of the Euclidean space Rn and d be the Euclidean
metric for Rn. Then f has POTP under d iff f is hyperbolic, i.e. it has
no eigenvalues of modulus 1.

Theorem

A toral endomorphism has POTP iff it is hyperbolic.

Theorem

Let X be a compact metric space and XZ =
∞∏
−∞

Xi, where each Xi is a

copy of X. Then the shift map σ : XZ → XZ has POTP .

Theorem (Walters)

Let S be a closed subset Y Z
k and σ : S → S be the subshift. Then

σ : S → S has POTP iff σ is subshift of finite type.
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Theorem

A family of tent maps fs, s ∈ [
√

2, 2], defined on [0, 2] has the shadowing
property for almost all parameter.

Theorem

A continuous map f on unit closed interval I of R, with Fixf = {0, 1}
has shadowing property.

Problems regarding restriction, extension, product, composition,
projecting, lifting and characterizations etc have been studied in
detail for homeomorphisms having shadowing property.

Notion of shadowing property is defined and studied in various other
settings. For instance, on uniform spaces, topological groups,
topological vector spaces, differentiable manifolds, etc.

Recently, many researches have studied relation between shadowing
property/ variants of shadowing with other dynamical properties.
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Consequences of Shadowing Property...

If f is transitive and has shadowing property then f has dense small
periodic sets.

Suppose f has shadowing and Per(f) is dense in a continuum X,
then f is a mixing.

Suppose f has shadowing property. Then the following are
equivalent:

f is totally transitive.
f is weakly mixing.

If f has shadowing property and f is weakly mixing then f is mixing.

Suppose f has shadowing property. If f is totally transitive then f is
mixing.
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The following result gives an important property of topologically
Anosov maps (i.e. expansive and having POTP ).

Walter, 1978

Suppose X is a compact metric space. If f is an expansive
homeomorphism which has shadowing property then f is topologically
stable in the class of homeomorphisms of X.

Definition : Nonwandering point

A point x ∈ X is called a nonwandering point of f if for every open
neighborhood U of x, there exist n > 0 such that fn(U) ∩ U 6= ∅. Ω(f)
denotes the set of all nonwandering points of f .
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Remarkable Applications of above Dynamical Properties

Spectral decomposition theorem due to Smale:

Let f be an expansive homeomorphism which has shadowing property.
Then the following properties hold: Ω(f) contains a finite sequence
Bi(1 ≤ i ≤ l) of f–invariant closed subsets such that

Ω(f) =
⋃l

i=1Bi (disjoint union),

f|Bi
: Bi → Bi is topologically transitive.

Decomposition theorem due to Bowen:

Let f be an expansive homeomorphism which has shadowing property.
Then for a basic set B there exists a > 0 and a finite sequence
Ci(0 ≤ i ≤ a− 1) of closed subsets such that

Ci ∩ Cj = φ(i 6= j), f(Ci) = Ci+1 and fa(Ci) = Ci,

B =
⋃a−l

i=1 Ci,

faCi
: Ci → Ci is topologically mixing.
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Minimality

Now we study one more dynamical property which is strictly stronger
than transitivity.

Definition : Minimal

A dynamical system (X, f) is said to be minimal if every orbit in X is
dense in X.

Characterization of minimality

A dynamical system (X, f) is minimal iff there is no proper, closed,
f -invariant (i.e. f(A) ⊆ A) subset of X.

Minimality =⇒ Topological transitivity

Every minimal dynamical system is topologically transitive.
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Remark

A topological transitive system need not be minimal as shown in the
following example.

Example

Consider the doubling map on circle given by f(θ) = 2θ. Then (S1, f) is
topologically transitive, in fact mixing, but not minimal.

Spaces admitting minimal maps

Spaces admitting minimal maps include

Cantor set
n-Torus, Tn, n > 1
Klein bottle

Spaces not admitting minimal maps

Spaces not admitting minimal maps include

Closed arc
T 2 \ {p}
S2

S2\ finite set
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Definition : Irreducible map

A map f : X → X is said to be irreducible if the only closed set A ⊆ X
for which f(A) = X is A = X.

Minimality =⇒ irreducibility

Let X be a compact metric space and f : X → X be minimal. Then f is
irreducible.

Definition : Feebly open map

A map f : X → X is said to be feebly open if for every nonempty open
subset U of X, there is a nonempty open subset V of X such that
V ⊆ f(U).

Minimality =⇒ feebly openess

Let X be a compact metric space and f : X → X be minimal. Then f is
feebly open.
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Devaney Chaos

The last dynamical property which we discuss here is chaos.

If the system is chaotic, small changes in initial states will have
much larger effects later on.

There are different types of chaos defined and studied in the
literature. We shall discuss here first accepted definition of chaos
given by Robert Devaney.

Definition : Sensitive dependence to initial conditions

Let (X, f) be a dynamical system where X is a metric space with metric
d and f : X → X be continuous. Then (X, f) has sensitive dependence
to initial conditions (SDIC) if there exists an ε > 0 such that for any
x ∈ X and neighborhood Nx about x, there exists a y ∈ Nx and n ∈ N
satisfying d(fn(x), fn(y)) > ε. The number ε is also called the sensitivity
constant for the system.
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Definition : Devaney chaotic

Let (X, f) be a dynamical system where X is a metric space and
f : X → X is continuous. Then f is said to be Devaney chaotic if f is
transitive, has dense set of periodic points and has SDIC.

The following result was proved by Banks et al.

Theorem

Let (X, f) be a dynamical system, where X is a compact metric space
and f : X → X is continuous. If f is transitive and has dense set of
periodic points then f has sensitive dependence on initial conditions.

Devaney chaotic on unit interval

On the unit interval, f is Devaney chaotic iff f is transitive.

Devaney chaotic on unit circle

On the unit circle, f mixing =⇒ f Devaney chaotic =⇒ f transitive.
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Dynamical Properties on G-spaces

By a topological transformation group or a G-space X we mean a
topological space X on which a topological group G acts
continuously by an action θ : G×X → X.

In the literature many dynamical properties have been defined and
studied for G-spaces.

Analyzing definitions of dynamical properties on metric/topological
spaces, we have extended the notions of expansivity, minimality,
mixing, transitivity, shadowing, chaos etc for
homeomorphisms/continuous maps on G-spaces not studied earlier.

We have obtained interesting results regarding
existence/non-existence, extensions, projecting, lifting,
characterizations, topological stability and decomposition theorems
for homeomorphisms/continuous maps on G-spaces and on general
topological spaces.
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Definition : Non-autonomous systems

Let X be a topological space and fn : X → X be continuous for each
n ∈ N and let f1,∞ denote the sequence (f1, f2, . . . , fn, . . . ). The pair
(X, f1,∞) is said to be non-autonomous system.

Define fn1 (x) = fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1, n ∈ N and f01 = idX , the
identity on X. In particular, when f1,∞ is a constant sequence
(f, f, . . . , f, . . . ) then the pair (X, f1,∞) is just the classical
dynamical system (autonomous dynamical system) (X, f).

Beginning with Kolyada and Snoha work in 1996, in the recent past
lots of studies have been done regarding dynamical properties in
nonautonomous discrete dynamical systems. We have defined and
studied expansiveness, shadowing, topological stability, chain
recurrence, non-wandering points, decomposition theorems in
nonautonomous discrete dynamical systems given by a sequence of
continuous maps/homeomorphisms on metric spaces.
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Some Recent References

Authors have defined and studied n-expansive homeomorphisms.
[C. Morales, A generalization of expansivity, Discrete and Continuous
Dynamical Systems, 2012]

Authors have studied Spectral decomposition on noncompact and
non-metrizable spaces.
[Tarun Das, Keonhee Lee, David Richeson, Jim Wiseman, Spectral
decomposition for topologically Anosov homeomorphisms on noncompact
and non-metrizable spaces, Topology and its Applications, 2013]

Authors have studied the existence of transitive expansive
homeomorphisms of R2.
[Jorge Groisman, Jos Vieitez, On transitive expansive homeomorphisms of
the plane, Topology and its Applications, 2014]

Results related to measure expansive diffeomorphisms are studied.
[K. Sakai et al, Measure expansive diffeomorphisms, J. Math. Anal. Appl.,
2014]
[M. J. Pacifico, J. L. Vieitez, On measure expansive diffeomorphisms,
Proceedings of the American Mathematical Society, 2015]
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