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What is Fire? 

• Heat is supplied from the fire to the 

potential fuel, the surface is dehydrated 

and further heating raises the surface 

temperature until the fuel begins to 

pyrolyze and release combustible 

gases. 
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When the gas evolution rate from the 

potential fuel is sufficient to support 

combustion, the gas is ignited by the 

flame and the fire advances to a new 

position. 
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• Gradually, a constant rate of spread is 

attained which is called “quasi-steady 

state” wherein the fire advances at a 

rate that is the average of all the 

elemental rates. 
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A mathematical model to determine rate 

of fire spread and its intensity is 

formulated. The model is developed by 

R.C. Rothermal (1972) and it is 

considered as the basis in the National 

Fire Danger Rating System. 
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Objective 



The model considers physical and 

chemical properties of the fuel and the 

environmental conditions in which it is 

expected to tingle.  
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• The physical properties incorporated are 

1. fuel loading 

2. fuel depth 

3. fuel particle surface area to volume ratio 

4. fuel particle moisture, and  

5. the moisture content at which extinction is 

expected. 
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• Environmental inputs are  

1. mean wind velocity 

2. slope of terrain. 

April 2, 2015 IWM2015 Delhi Uni. 8 



Mathematical Model 
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quasi-steady rate of spread, ft/min 

Horizontal heat flux absorbed by a unit volume of the fuel 

at the time of ignition B.t.u./ft2 min 

Effective bulk density (the amount of fuel per unit volume of 

the fuel bed raised to ignition ahead of the advancing fire), 

lb/ft3 

Heat of pre-ignition (the heat required to bring a unit weight 

of fuel to ignition), B.t.u./lb 

The gradient of the vertical intensity evaluated at a plane at 

a constant depth, 𝑧𝑐, of the fuel bed, B.t.u./ft3 min 

Horizontal coordinate 
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• Using conservation of energy principle 

to a unit volume of fuel ahead of an 

advancing fire in a homogeneous fuel 

bed (by Fransen (1971))  

 

April 2, 2015 IWM2015 Delhi Uni. 10 

0
heat flux received 

from the source
(1)

heat required for 

ignition by the potential fuel



 
  

 
 




c

z
Xig

z

be ig

I
I dx

z
R

Q



• The fuel-reaction zone interface is fixed 

and the unit volume is moving at a 

constant depth, zc, from x = - infinity 

towards the interface at x = 0. The unit 

volume ignites at the interface. 
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Analysis 



• The heat required for ignition depends upon 

(a)Ignition temperature 

(b) moisture content of the fuel, and 

(c)Amount of fuel involved in the ignition 

process. 
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• The energy per unit mass required for 

ignition is the heat of pre-ignition,    . 
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• The amount of fuel involved in the 

ignition process is the effective bulk 

density,    .  

• An effective heating number   is ratio of 

the effective bulk density to the actual 

bulk density. 
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• The effective heating number is 

dimensionless which will be nearly 

unity for fine fuels and decrease to zero 

as fuel size increases. Therefore, 
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 bulk density,  fuel size (4) be f



• Propagating Flux 

   It is given by 

 

April 2, 2015 IWM2015 Delhi Uni. 16 

0

gradient of the vertical flux integrated from

-infinity to the fire fron

horizontal

flu

5

     

x

  

  t

c

z

p Xig

z

I
I I dx ( )

z


 
    

 





April 2, 2015 IWM2015 Delhi Uni. 17 



• The figures indicate that the vertical 

flux is more significant during wind-

driven and upslope fires because the 

flame tilts over the potential fuel, 

thereby, increasing radiation, causing 

direct flame contact and convective 

heat transfer to the potential fuel. 

April 2, 2015 IWM2015 Delhi Uni. 18 



• Assume that the vertical flux is small 

for no-wind fires and let            . This is 

the basic heat flux component to which 

all additional effects of wind and slope 

are related.  

• With (3) – (5) in (1) and             and R=R0 

for the no-wind case, we get 
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• The energy release rate of the fire front 

is produced by burning gases released 

from the organic matters in the fuels. 
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Reaction Intensity 



• The rate of change of this organic 

matter from a solid to a gas is a good 

approximation of the subsequent heat 

release rate of the fire. 
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• The heat release rate per unit area of 

the front is called the reaction intensity 

and is defined as  
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• The reaction intensity is a function of 

fuel parameters such as particle size, 

bulk density, moisture, and chemical 

composition. 

• The reaction intensity is the source of 

the no-wind propagating flux 
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• Wind and slope change the 

propagating heat flux by exposing the 

potential fuel to additional convective 

and radiant heat.  
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Effect of Wind & Slope 
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• Let    and 𝜙𝑠 represent the additional 

propagating flux produced by wind and 

slope. The total propagating flux is  

 

• Approximate rate of spread (eq.(1)) becomes 

       

April 2, 2015 IWM2015 Delhi Uni. 26 

w

   
0

1 (9)  p p w sI I  

   
0

1
(10)

 


p w s

b ig

I
R

Q

 

 



Specific heat of dry wood 

Temperature range to ignition 

Fuel moisture lb. water / lb. dry wood 

Specific heat of water 

Temperature range to boiling 

Latent heat of vaporization 
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•     for cellulosic fuels is determined by 

considering the change in specific heat 

from ambient to ignition temperature 

and the latent heat of vaporization of 

the moisture as 
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• Taking temperature to ignition in the 

range of 200c to 3200c and boiling 

temperature to be @ 1000c, eq. (11) 

becomes 
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250 1116 (12) ig fQ M ,B.t.u. / lb



• To determine the effective bulk density, 

we need to compute the efficiency of 

heating as a function of particle size. 
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Effective Bulk Density 



• An exponential fit is given by 
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• Rearrange eq.(7) as 

 

 

 

• To solve (16), integrate    over the 

reaction zone depth D, and    over the 

limits of loading in the reaction zone. 
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where 
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• The time taken for the fire front to travel 

a distance equivalent to the depth of 

one reaction zone is the reaction time,  

    

Then eq. (18) becomes 

                                                      (20) 
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• Next, we define a maximum reaction 

intensity where there is no loading 

residue left after the reaction zone is 

passed and where the reaction time 

remains unchanged. 
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• The reaction zone efficiency is 

    

 

In (23), the net fuel loading is given by 
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• The reaction velocity denotes the 

completeness and rate of fuel 

consumption. It is defined as the ratio 

of the reaction zone efficiency to the 

reaction time. 
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Reaction Velocity 
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1. Moisture content 

2. Mineral content 

3. Particle size, and 

4. Fuel bed bulk density 
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Effective Fuel Parameters for 

Reaction Velocity 



 

 

Then  

 

 

One can evaluate reaction velocity and the moisture 

and mineral damping coeffiecients by experiments. 
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Potential reaction velocity/min 

Moisture damping coefficient having values 

ranging from 1 to 0 

Mineral damping coefficient having value 

ranging from 1 to 0 
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• It is defined as  
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In adjacent fig.,       is fuel 

moisture and 𝑴𝒙 is the 

moisture content of the 

fuel at which the fire will 

not spread. 

 

Moisture damping 

coefficient accounts for 

the decrease in intensity 

caused by the 

combination of fuel that 

initially contained 

moisture.  
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fM



• It was evaluated from thermo gravimetric 

analysis (TGA) data of natural fuels by Philot 

(1968). It is assumed that the ration of the 

normalized decomposition rate will be same 

as the normalized reaction intensity. 
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Mineral Damping coefficient 



 

where 𝑺𝒆 is effective 

mineral content. 
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0.190.174 (30)s eS 



• Next, we need to consider two 

parameters: 

1. The reaction intensity – fuel bed 

compactness, and 

2. Fuel particle size  
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Physical Fuel Parameters 



Assume that low values of fire intensity 

and rate of spread occur at the two 

extremes of compactness (loose and 

dense). 

In dense beds, this can be attributed to 

low air-to-fuel ratio and to poor 

penetration of the heat beyond the upper 

surface of the fuel array. 
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• In loose beds, low intensity and poor 

spread are attributed to heat transfer 

looses between particles and to lack of 

fuels. 
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• Between these two extremes, there 

must be an optimum best equilibrium 

of air, fuel and heat transfer for both 

maximum fire intensity and reaction 

velocity. 
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• The compactness of the fuel bed is 

quantified by the packing ration, which 

is the ratio of the fuel array to fuel 

particle density. 
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• The surface area-to-volume ratio,  is 

used to quantify the particle size. 

• For fuels that are long w.r.t. the 

thickness 

    

April 2, 2015 IWM2015 Delhi Uni. 49 



4
(32)

here denotes diameter of circular particles

or edge length of square particles.

d

d

 



The reaction time,      

is defined on the 

derivative curve as the 

time from initial mass 

loss until the loss 

stabilizes at a steady 

rate. 

During the reaction 

time mass loss rate is 

linear. Also the 

duration of the 

constant mass rate is 

dependent on the 

length of platform. 
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The reaction time 

could be thought of as 

the fire burned off. 
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The mass loss rate is  

 

 

The efficiency of fire is 
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• With efficiency and the reaction time, 

the reaction velocity is 
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The potential reaction 

velocity to disassociate 

the reaction velocity 

from the effects of the 

moisture and minerals 

of the fuel is              . 

The reaction velocity must 

drop to zero if there is no 

fuel to support combustion. 
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Tightly packed fine fuels 

have lower reaction 

velocity than do longer 

fuels at the same packing 

ratio. 



The loss of reaction 

intensity of the fine 

fuel can be seen as 

the difference in 

flaming vigor. 
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To determine the 

general equation as a 

function of    and 𝜎 is 

given by  
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Combining these two eqs. gives 
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These will predict reaction velocity for 

any combination of fuel particle size and 

any packing ratio. The eqs. will predict 

reasonable values when input 

parameters are extrapolated. This will 

help us to predict reaction intensity and, 

subsequently, rate of spread over a wide 

range of fuel and environmental 

combinations. 
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The no-wind propagating flux is 

 

A ratio 𝝃 relating the propagating flux to 

the reaction intensity is 
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Propagating Flux 
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A respective fit is 
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1
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It is seen that         

increases with 

increase in    , but at a 

decreasing rate.  

       will attain a 

maximum and then 

decreases. 

This is reasonable, 

considering the fact 

that the fuel array is 

becoming so compact 

that the intensity has 

decreased. 
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Combining the heat source and heat sink 

terms results into the no-wind rate of 

spread equation as 
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Fire Flames 
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