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1. Introduction

• In this article a function projective synchronization(FPS) of two
identical new hyper chaotic systems is defined and scheme of FPS
is developed by using Open-Plus-Closed-Looping(OPCL) coupling
method. A new hyper chaotic system has been constructed and
then response system with parameters perturbation has been de-
fined. Numerical simulations verify the effectiveness of this scheme,
which has been performed by mathematica and MATLAB.

• Here, we have constructed a new hyper chaotic system and verified
the chaotic behavior of this system by time series analysis and draw-
ing chaotic attractors via mathematica and MATLAB. Hyperchaotic
behavior of this system is discovered within some system parameters
range, which has not yet been reported previously.

2. Preliminaries

In this section we mention some definitions and scheme of the main task.

• Chaos is a dynamical regime in which a system becomes extremely
sensitive to initial conditions and reveals an unpredictable and random-
like behavior. Small differences in initial conditions yield widely di-
verging outcomes for chaotic systems, rendering long term prediction
impossible in general.

• A hyperchaotic system is defined as chaotic behavior with at least
two positive Lyapunov exponents.

2.1. Function Projective Synchronization. Function Projective
synchronization is defined in the following manner:

Let ẋ = F (x, t) be the drive chaotic system, and ẏ = F (y, t) + U be the
response system, where x = (x1(t), x2(t), ..., xm(t))T ,
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2 FUNCTION PROJECTIVE SYNCHRONIZATION

y = (y1(t), y2(t), ..., ym(t))T , U = (u1(x, y), u2(x, y), ..., um(x, y)) is a
controller to be determined later.

Denote ei = xi − fi(x)yi, (i = 1, 2, ...,m), fi(x), (i = 1, 2, ...,m) are
functions of x. If

lim
t→∞

∥e∥ = 0,

e = (e1, e2, ..., em), there exists function projective synchronization (FPS)
between these two identical chaotic (hyperchaotic) systems, and we call f

a scaling function matrix.

2.2. Methodology for FPS via OPCL. Here, we will construct
corresponding response system through the OPCL coupling method.
Consider the following n-dimensional chaotic system as drive system

dx
dt = f(x) +△f(x), (1)

where x ∈ Rn and △f(x) is the perturbation part of the parameters. Now,
consider the following n-dimensional chaotic system as response system

according to coupling method :

dy

dt
= f(y) +D(y, g), (2)

where y ∈ Rn. The coupling function is:

D(y, g) = ġ − f(g) + (H − ∂f(g)

∂g
)(y − g) (3)

where ∂f(g)
∂g is the jacobian matrix of the dynamics system. H is an n×n

Hurwitz constant matrix, whose eigen values are negative and g = β(t)x
with β(t) is a scaling function which is continuously differentiable. When
β(t) = ±1, system is complete synchronization or antisynchronization

accordingly.
Our goal in this paper is to find out D(y, g) and hence find error dynamics

of the system such that

lim
t→∞

∥e∥ = lim
t→∞

∥y − g∥ = 0,

where ∥ · ∥ is the Euclidean norm, then the systems (1) and (2) are said to
be Function Projective synchronized.

3. System Description

3.1. Hyper Chaotic Rabinovich-Fabrikant system. The
Rabinovich-Fabrikant chaotic system is a set of three coupled ordinary
differential equations exhibiting chaotic behavior for certain values of
parameters. They are named after Mikhail Rabinovich and Anatoly
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Fabrikant, who described them in 1979 [18]. The equations of system are :

ẋ1 = x2(x3 − 1 + x21)+γx1,

ẋ2 = x1(3x3 + 1− x21)+γx2,

ẋ3 = −2x3(x1x2+α)



where α and γ are constant parameters that control the evolution of the
system. For some values of α and γ, the system is chaotic but for other it
tends to a stable periodic orbit. Now, we construct a new hyper chaotic

system by introducing one more differential equation with a new
parameter δ in the above system as follow:

ẋ1 = x2(x3 − 1 + x21)+γx1,

ẋ2 = x1(3x3 + 1− x21)+γx2,

ẋ3 = −2x3(x1x2+α),

ẋ4 = −3x3(x2x4 + δ) + x24


(4)

This new system shows hyper chaotic behavior with some values of
parameters and tend to stable periodic orbits with other values of

parameters. We have investigated system’s behavior for different values of
δ. Figures are given below:
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Fig.1 Chaotic behavior of the
system with α = 0.14,γ = 1.1

and −0.01 ≤ δ ≤ 7650 tending to
stable periodic orbits
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Fig.2 Time series analysis of y1[t]
with α = 0.14,γ = 1.1 and

−0.01 ≤ δ ≤ 7650
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Fig.3 Time series analysis of y2[t]
with α = 0.14,γ = 1.1 and

−0.01 ≤ δ ≤ 7650
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Fig.4 Time series analysis of y3[t]
with α = 0.14,γ = 1.1 and

−0.01 ≤ δ ≤ 7650
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Fig.5 Time series analysis of y4[t]
with α = 0.14,γ = 1.1 and

−0.01 ≤ δ ≤ 7650

-1.4
-1.3

-1.2
-1.1

-1.0

0.0

0.5

1.0

1.5

0.0

0.2

0.4

Fig.6 Chaotic Behavior of the
system with α = 0.87,γ = 1.1

and δ = 1890
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Fig.7 Time series analysis of y1[t]
with α = 0.87,γ = 1.1 and

δ = 1890
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Fig.8 Time series analysis of y2[t]
with α = 0.87,γ = 1.1 and

δ = 1890
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Fig.9 Time series analysis of y3[t]
with α = 0.87,γ = 1.1 and

δ = 1890
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Fig.10 Time series analysis of
y4[t] with α = 0.87,γ = 1.1 and

δ = 1890
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Fig.11 Chaotic Behavior of the
system with α = 0.87,γ = 1.1

and δ = −0.2
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Fig.12 Time series analysis of
y1[t] with α = 0.87,γ = 1.1 and

δ = −0.2
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Fig.13 Time series analysis of
y2[t] with α = 0.87,γ = 1.1 and

δ = −0.2
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Fig.14 Time series analysis of
y3[t] with α = 0.87,γ = 1.1 and

δ = −0.2
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Fig.15 Time series analysis of
y4[t] with α = 0.87,γ = 1.1 and

δ = −0.2

3.2. Illustration. In this section, we perform function projective
synchronization of above described system via OPCL coupling method.

Define following system as a drive system with parameters perturbation as

ẋ1 = x2(x3 − 1 + x21) + (γ +∆γ)x1,

ẋ2 = x1(3x3 − x21 + 1) + (γ +∆γ)x2,

ẋ3 = −2x3(x1x2+α+∆α),

ẋ4 = −3x3(x2x4 + δ +∆δ) + x24


(5)

where ∆γ, ∆α and ∆δ are the perturbation parts in the parameters. Now
construct the corresponding response system via OPCL coupling method.

The Jacobian matrix of the system (5) is

∂f(x)

∂x
=


γ +∆γ + 2x1x2 x21 + x3 − 1 x2 0

3x3 − 3x21 + 1 γ +∆γ 3x1 0

−2x2x3 −2x1x3 −2(α+∆α+ x1x2) 0

0 −3x3x4 −3x2x4 − 3δ − 3∆δ 2x4 − 3x2x3


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Define Hurwitz matrix H as the unit negative matrix −I (as g = βx),

Then H − ∂f(g)
∂g

=


−γ −∆γ − 2β2x1x2 − 1 −β2x2

1 − βx3 + 1 −βx2 0

−3βx3 + 3β2x2
1 − 1 −γ −∆γ − 1 −3βx1 0

2β2x2x3 2β2x1x3 2(α+∆α+ β2x1x2)− 1 0

0 3β2x3x4 3β2x2x4 + 3δ + 3∆δ −2βx4 + 3β2x2x3 − 1


Therefore, response system after coupling is as follows

ẏ1 = f(y1)− f(g1) + ġ1 + (H − ∂f(g1)

∂g1
)(y1 − g1)

ẏ2 = f(y2)− f(g2) + ġ2 + (H − ∂f(g2)

∂g2
)(y2 − g2)

ẏ3 = f(y3)− f(g3) + ġ3 + (H − ∂f(g3)

∂g3
)(y3 − g3)

ẏ4 = f(y4)− f(g4) + ġ4 + (H − ∂f(g4)

∂g4
)(y4 − g4)


(6)

As error dynamics is defined as ė = ẏ − ġ, so we have final equation of
error dynamics after coupling and putting values of f(y),f(g) and

(H − ∂f(g)
∂g )(y − g) in above equation as follows

ė1 = ∆γe1 + e2e3 + e2e
2
1 + 2βx1e1e2 + βx2e

2
1 − e1

ė2 = ∆γe2 + 3e1e3 + e31 + 3βx1e
2
1 − e2

ė3 = −2∆αe3 − 2e1e2e3 + e2e1e2βx3 − 2βx2e1e3 − 2βx1e2e3 − e3

ė4 = −3∆δe3 − 2e2e3e4 − 3e2e4βx3 − 3βx2e4e3 − 3βx4e2 − e4


(7)

So, from the above error dynamics we can conclude that FPS between two
identical hyper chaotic system can be achieved.

4. Numerical Simulations

If Perturbation of Parameters of the response system of hyper chaotic
Rabinovich-Fabrikant system are zero and β = 0.5 with the initial

conditions of drive system [x1(0), x2(0), x3(0), x4(0)] = [0, 2, 0.5,−0.2] and
response systems [y1(0), y2(0), y3(0), y4(0)] = [0.5, 1,−0.1,−0.15]

respectively. So, the initial conditions for
[e1(0), e2(0), e3(0), e4(0)] = [0.5, 0,−0.35,−0.05] diagrams of convergence of

errors given below are the witness of achieving function projective
synchronization between master and slave system.
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Fig.16 Convergence of error
e1, t∈[0, 10]
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Fig.17 Convergence error of
e2, t∈[0, 10]
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Fig.18 Convergence of error
e3, t∈[0, 10]
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Fig.19 Convergence of error
e4, t∈[0, 10]

Conclusion and benefits

Since hyperchaotic systems have the characteristics of high capacity, high
security and high efficiency, it has been studied with increasing interest in
the fields of non-linear circuits, secure communications, lasers, control,
synchronization, and so on. So we have studied Function Projective

Synchronization behavior for this new hyper chaotic systems, which is
offcourse more effective and useful in secure communication as FPS is

more useful in secure communication as compare to others because of its
unpredictability . The results are validated by numerical simulations using

mathematica. It has more advantage over other synchronization to
enhance security of communication and moreover as it is performed for

hyperchaotic system, which makes it more useful.
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