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Basics

A sequence {xk}∞k=1 in H is a frame for H if ∃ A,B > 0

such that

A||x||2 ≤
∞∑
k=1

| < x, xk > |2 ≤ B||x||2, ∀x ∈ H.

A and B → frame bounds.

For frame {xn} in H, T : l2(N)→ H,

T ({ck}) =
∞∑
k=1

ckxk.

is pre- frame operator.
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is known as analysis operator.

Frame operator S = TT ∗ : H → H defined as

S(x) =
∞∑
k=1

< x, xk > xk x ∈ H.



Basics

The adjoint operator of T , T ∗ : H → l2

T ∗(x) = {< x, xk >}∞k=1.

is known as analysis operator.

Frame operator S = TT ∗ : H → H defined as

S(x) =
∞∑
k=1

< x, xk > xk x ∈ H.



Let {xn} be a frame for H with frame operator S. Then

x =
∞∑
k=1

< x, S−1xk > xk, x ∈ H.

Let {xn} in E and {fn} in E∗. Then ({fn}, {xn}) is an

atomic decomposition of E with respect to Ed, if

(a) {fn(x)} ∈ Ed, ∀x ∈ E .

(b) A||x||E ≤ ||{fn(x)}||Ed
≤ B||x||E , x ∈ E

(c) x =
∑∞

k=1 fk(x)xk , ∀x ∈ E .

A,B → atomic bounds.
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Banach Frame

Let {fn} in E∗ and S : Ed → E . Then ({fn},S) is Banach

frame for E w.r.to Ed if

(a) {fn(x)} ∈ Ed, ∀x ∈ E .

(b) A‖x‖E ≤ ‖{fn(x)}‖Ed ≤ B‖x‖E , x ∈ E .

(c) S is bounded linear operator s.t.

S(fn(x)) = x x ∈ E .

A,B → frame bounds.



Banach Frame

Let {fn} in E∗ and S : Ed → E . Then ({fn},S) is Banach

frame for E w.r.to Ed if

(a) {fn(x)} ∈ Ed, ∀x ∈ E .

(b) A‖x‖E ≤ ‖{fn(x)}‖Ed ≤ B‖x‖E , x ∈ E .

(c) S is bounded linear operator s.t.

S(fn(x)) = x x ∈ E .

A,B → frame bounds.



Banach Frame

Let {fn} in E∗ and S : Ed → E . Then ({fn},S) is Banach

frame for E w.r.to Ed if

(a) {fn(x)} ∈ Ed, ∀x ∈ E .

(b) A‖x‖E ≤ ‖{fn(x)}‖Ed ≤ B‖x‖E , x ∈ E .

(c) S is bounded linear operator s.t.

S(fn(x)) = x x ∈ E .

A,B → frame bounds.



Banach Frame

Let {fn} in E∗ and S : Ed → E . Then ({fn},S) is Banach

frame for E w.r.to Ed if

(a) {fn(x)} ∈ Ed, ∀x ∈ E .

(b) A‖x‖E ≤ ‖{fn(x)}‖Ed ≤ B‖x‖E , x ∈ E .

(c) S is bounded linear operator s.t.

S(fn(x)) = x x ∈ E .

A,B → frame bounds.



(i) Tight frame if A = B

(ii) Normalized tight frame if A = B = 1

(iii) Exact frame if there exists no reconstruction operator S0
such that ({fn}n6=i,S0) (i ∈ N) is a Banach frame for E .
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Examples

For E = c0 and {fn} in E∗ defined as

fn(x) = ξn, (n ∈ N) x = {ξn} ∈ E .

Then there exist Ed = {{fn(x)} : x ∈ E} with norm

||{fn(x)}||Ed = ||x||E

and S : Ed → E defined by

S({fn(x)}) = x, x ∈ E .

Thus ({fn}, S) is a Banach frame for E w. r. to Ed.

`∞/c0 does not have any Banach frame.



Few Results on Banach Frames

(1) If a Banach space E has an atomic decomposition, then E

has a Banach frame. The converse need not be true.

(2) A Banach space with an atomic decomposition is

separable. However, the converse need not be true.

(3) Every separable Banach space has a normalized tight and

exact Banach frame.

(4) Let E be a Banach space having a Banach frame. Then,

E has a normalized tight and exact Banach frame.
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Frames in Subspaces of Banach Spaces

Every Banach space E has a closed subspace having a

Banach frame.

Let ({fn}, S)({fn} ⊂ E∗,S : Ed → E) be a Banach frame

for E and G be a closed subspace of E . Then, ∃ Gd and

T : Gd → G such that ({fn|G}, T ) is a Banach frame for

G w.r.to Gd
Let ({fn}, S)({fn} ⊂ E∗,S : Ed → E) be a Banach frame

for E. Then, for every {nk} , ∃ a closed subspace G of E

and T : Gd → G such that ({fnk
|G}, T ) is Banach frame

for G w.r.t Gd.
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For E = `∞ and G = c0. E and G have Banach frame,

however E/G has no Banach frame.



Banach Frame System

Let ({fn}, S)({fn} ⊂ E∗,S : Ed → E) is a Banach frame

for E w.r.to Ed . Let {φn} in E∗∗ be such that

φi(fj) = δi,j, i, j ∈ N .

If ∃ E∗d and T : E∗d → E∗ such that ({φn}, T ) is a Banach

frame for E∗ w.r.to E∗d , then

(({fn},S), ({φn}, T ))

is a Banach frame system for E.

({φn}, T ) is called an admissible Banach frame to

({fn}, S).
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Examples of Banach frame System

`∞ has no Banach frame system however it posseses a Banach

frame.



Towards Uniqueness

As [fn] 6= E∗, let e ∈ E∗ \ [fn] , ∃ g0 ∈ E∗∗ such that

g0(e) 6= 0

and

g0([fn]) = 0.

Define {φn} ⊂ E∗∗ by

φ1 = g1 − g0, φn = gn, n = 2, 3, 4, ..

Then ({φn}, T0) is another admissible Banach frame to

({fn}, S), where

T0 : (E∗)d → E∗

by T0({gn(f)}) = f, f ∈ E∗
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Theorem

Let(({fn},S), ({gn}, T )) be a Banach frame system for E .

Then, ({gn}, T ) is the unique admissible Banach frame to

({fn}, S) if and only if [fn] = E∗

Theorem

If ({fn}, S) is an exact Banach frame for E such that

∞⋂
n=1

[̃fi]
∞
i=n+1 = {0}.

Then, E has a Banach frame system.
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