Department of Mathematics University of Delhi, Delhi

M.A./M.Sc. Mathematics, Part-I, Semester-II Examination, May-June 2024

Paper:MMATH18 201 Module Theory Unique Paper Code: 223501201

Time: 3 Hours

Maximum Marks: 70

Note: \bullet Attempt five questions in all. \bullet Question 1 is compulsory. \bullet All questions carry equal marks.

1.	(a)	Prove that every abelian group is a \mathbb{Z} -module.	(3)
	(b)	Find the number of \mathbb{Z} -module homomorphisms between $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ and $\mathbb{Z}_4 \oplus \mathbb{Z}_6$.	(3)
	(c)	Is every submodule of a free module free? Justify.	(3)
	(d)	Let G be a finite abelian group and \mathbb{Q} the set of rational numbers. Show $G \otimes_{\mathbb{Z}} \mathbb{Q} = \{0\}.$	that (2)
	(e)	Prove that the homomorphic image of a divisible module is divisible.	(3)
2.	(a)	State and prove the universal property of coproduct (direct sum) of a family of R -modules.	left (8)
	(b)	Prove that a short exact sequence $0 \longrightarrow M' \xrightarrow{\lambda} M \xrightarrow{\mu} M'' \longrightarrow 0$. <i>R</i> -modules and homomorphisms, splits if and only if μ has left inverse.	, of (6)
3.	(a)	Give an example of a contravariant functor that is left exact but not right.	(4)
	(b)	Prove that any two free modules with bases having the same cardinalities are all isomorphic.	ways (4)
	(c)	Let M be a finitely generated free module over a non-trivial commutative rin Prove that all the bases of M are finite and have the same number of element	g R. s.(6)
4.	(a)	Let R be a PID and $a = p_1^{e_1} \cdots p_n^{e_n}$, where p_1, \ldots, p_n are distinct (non-association primes in R and e_1, \ldots, e_n are positive integers. Prove that $R/\langle a \rangle \cong R/\langle p_1^{e_1} \rangle \oplus R/\langle p_n^{e_n} \rangle$.	iate) $\cdots \oplus$ (6)
	(b)	Let R be a PID. Prove that a direct sum of finitely many non-zero cyclic R -mois cyclic if and only if the modules (summands) are bounded and their bound pairwise coprime.	dules s are (8)
5.	(a)	State and prove the Baer's Criterion.	(8)
	(b)	Let $M = \sum_{i \in I} S_i$, where each S_i is a simple submodule the left <i>R</i> -module <i>M</i> . I that <i>M</i> is semi-simple.	Prove (6)

- 6. (a) Prove that the fully invariant submodules of a semi-simple module are a sum of type components. (5)
 - (b) State and prove the universal property of the tensor product of modules over a (1+8)
- 7. (a) Let N_1, N_2 be submodules of an *R*-module *M* such that M/N_1 and M/N_2 are both Artinian. Prove that $M/(N_1 \cap N_2)$ is also Artinian. (3)
 - (b) Let N be a proper submodule of an R-module M of finite length. Prove that the length of N is less than the length of M. (6)
 - (c) Prove that a module has a composition series if and only if it is both Noetherian and Artinian.

No. of printed pages 2

Your Name

DEPARTMENT OF MATHEMATICS M.A./M.Sc. Part-I, Semester-II, May-June 2024 MMATH18-202 : Introduction to Topology UPC : 223501202

Time: 3 hours.

Maximum Marks: 70

Instruction: Attempt any *Five* questions. Question No.1 is compulsory. Each question carries 14 marks.

- 1. (i) Justify the statement : Sierpinski space is a T_0 space but not T_1 . [2]
 - (ii) What are the limits of the sequence $\left\{\frac{1}{n}\right\}$ in \mathbb{R}_f , the space of real numbers with the co-finite topology? [3]
 - (iii) Determine two different bases for the Euclidean topology on the set of real numbers. [3]
 - (iv) Show that a continuous function $f: [0,1] \longrightarrow [0,1]$ has a fixed point. [3]
 - (v) Let $x_n \longrightarrow x$ in a space X. Show that the set $\{x_n : n \in \mathbb{N}\} \cup \{x\}$ is a compact subset of X. [3]
- 2. (a) Let \mathcal{B} be a collection of subsets of the set X such that $X = \bigcup \{B : B \in \mathcal{B}\}$, and for every two members B_1 and B_2 of \mathcal{B} and for each points $x \in B_1 \cap B_2$ there exists $B_3 \in \mathcal{B}$ with $x \in B_3 \subset B_1 \cap B_2$. Show that there is a topology on X for which \mathcal{B} is a basis. [7]
 - (b) Show that the closed topologist sine curve $\{(x, \sin \frac{1}{x}) : 0 < x \leq 1\} \cup \{(0, y) : |y| \leq 1\}$ is connected but not a path connected subset of \mathbb{R}^2 . [7]
- 3. (a) Let $X_{\alpha}, \alpha \in A$, be a family of topological spaces, and $p_{\beta} : \prod X_{\alpha} \longrightarrow X_{\beta}$ be the projection onto the βth factor. Show that a net ϕ in $\prod X_{\alpha}$ converges to $x = (x_{\alpha})$ if and only if $p_{\alpha} \circ \phi \longrightarrow x_{\alpha}$ for each $\alpha \in A$. [7]
 - (b) Prove that a space X is locally connected if and only if the components of each open subsets of X are open. [7]
- 4. (a) Show that an infinite Hausdorff space has infinitely many disjoint open sets. [7]
 - (b) Show that a space X is compact iff each family of closed subsets of X with finite intersection property has non empty intersection. [7]
- 5. (a) Let X be a first countable space and Y a space. Show that a function $f: X \longrightarrow Y$ is continuous if and only if $x_n \longrightarrow x$ in X implies $f(x_n) \longrightarrow f(x)$ in Y. [7]
 - (b) Show that a space X is Hausdorff iff each net in X converges to atmost one point. [7]
- 6. (a) Show that finite product of compact spaces is compact. [7]
 (b) Let X be a compact Hausdorff space. Show that a set A ⊂ X is closed if and only if it is compact. [7]

- 7. (a) Show that a T_1 space X is countably compact if and only if it has the Bolzano-Weierstrass property. [7]
 - (b) Show that every metric space is first countable. Give an example of a space which is not first countable. [4+3]

Sec.

<u>े तक</u>

---- t

5

Roll Number:

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI M.A./M.Sc. Examinations, May/June-2024 MMATH18-203: FUNCTIONAL ANALYSIS (UPC : 223501203)

	Mariana Marka 70		
Time: 3 hours Maximum Marks: 70			
Instructions: • Attempt five questions in all. • Question 1 is compulsory. • All			
the symbols have their usual meaning unless o	therwise specified.		
Q1. Prove or disprove the following: (a) The norm $\ \cdot\ $ on \mathbb{R}^2 defined by $\ x\ $ be obtained from an inner product of	$ = \xi_1 + \xi_2 , \ x = (\xi_1, \xi_2) \in \mathbb{R}^2 ext{ can}$ n $\mathbb{R}^2.$	[2 Marks]	
(b) The range of a bounded linear operation	tor is closed.	[3 Marks]	
(c) The dual of a reflexive normed space	e is reflexive.	[3 Marks]	
(d) A weakly convergent sequence in a n	ormed space is bounded.	[3 Marks]	
(e) Let X and Y be normed spaces and is strongly operator convergent with I	$T_n \in B(X, Y)$. If a sequence (T_n) limit T , then $T \in B(X, Y)$.	[3 Marks]	
Q2. (a) Show that a subset M of a normed s every $f \in X'$ which is zero everywher	pace X is total in X if and only if e on M is zero everywhere on X.	[6 Marks]	
(b) Let H be a complex Hilbert space a normal if and only if $ T^*x = Tx $ for for a normal linear operator T, $ T^2 $	nd $T \in B(H, H)$. Prove that T is or all $x \in H$. Using this, show that $= T ^2$.	[4 Marks]	
(c) Consider $X = C^1[0, 1]$ with the supro- by $f(x) = x'(1), x \in X$ a linear and co- assertion.	emum norm. Is $f: X \to \mathbb{K}$ defined ontinuous functional? Justify your	[4 Marks]	
3. (a) If $X \neq \{0\}$ is a complex Banach spatter that $\sigma(T) \neq \emptyset$.	ace and $T \in B(X, X)$, then prove	[6 Marks]	
(b) Show that the dual space of ℓ^p is ℓ^q ,	where $\frac{1}{p} + \frac{1}{q} = 1$.	[8 Marks]	
4. (a) Let $\{x_1, \dots, x_n\}$ be a linearly indeposed on X (of any dimension). Show the that for every choice of scalars α_1, \dots	endent set of vectors in a normed nat there is a number $c > 0$ such , α_n , we have	[6 Marks]	
$\ \alpha_1 x_1 + \dots + \alpha_n x_n\ \ge c(\alpha_1$	$ +\cdots+ \alpha_n).$		

(b) State and prove the Hahn-Banach theorem for real vector spaces. [8 Marks]

.

- 2- MMATH18-203:Functional Analysis (UPC : 223501203)

- Q5. (a) State and prove the Riesz representation theorem for bounded linear [6 Marks] functionals.
 - (b) Define the Hilbert-adjoint operator T^{*} of a bounded linear operator T. [8 Marks] Let T : ℓ² → ℓ² be defined by Tx = (0, ξ₁, ξ₂, · · ·), x = (ξ_j) ∈ ℓ². Show that T is an isometric operator but not unitary. Also, find T^{*} and ||T^{*}||.
- Q6. (a) Define the resolvent set $\rho(T)$ of $T \in B(X, X)$, where X is a complex [6 Marks] Banach space, and show that it is an open subset of the complex plane \mathbb{C} .
 - (b) Let T be a bounded linear operator from a Banach space X onto a [8 Marks] Banach space Y. Prove that the image $T(B_0)$ of the open unit ball $B_0 = B(0; 1) \subset X$ contains an open ball about 0 in Y.
- Q7. (a) Let X and Y be normed spaces, $T : \mathcal{D}(T) \subset X \to Y$ be a linear [6 Marks] operator. Show that T is closed if and only if $x_n \to x$ $[x_n \in \mathcal{D}(T)]$ and $Tx_n \to y$ together imply that $x \in \mathcal{D}(T)$ and Tx = y.
 - (b) Let X be a normed space and Y be a Banach space. If $T : \mathcal{D}(T) \subset [4 \text{ Marks}]$ $X \to Y$ is a bounded closed linear operator, then prove that $\mathcal{D}(T)$ is a closed subset of X.
 - (c) Let X be a complex Banach space, $T: X \to X$ a linear operator, and [4 Marks] $\lambda \in \rho(T)$. If T is closed, then show that $R_{\lambda}(T)$ is defined on the whole space X and is bounded.

Your Roll Number:

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI M.Sc. Mathematics Examinations, May-June 2024 Part I Semester II MMATH18-204: FLUID DYNAMICS UPC 223501204

Time: 3 hours

Maximum Marks: 70

[3]

[2]

Instructions: • Write your roll number on the space provided at the top of this page immediately on receipt of this question paper • Question No. 1 is compulsory and answer any **four** questions from the rest of questions no. 2 to 7. • All the symbols have their usual meaning unless otherwise mentioned.

- (1) (a) Define the acceleration of a moving fluid and reduce it for a flow of potiential kind. [3]
 - (b) Classify all type of forces acting on a fluid.
 - (c) Doublets of strengths μ_1 , μ_2 are situated at points A_1 , A_2 whose cartesian coordinates are $(0, 0, c_1)$, $(0, 0, c_2)$, their axes being directed towards and away from the origin respectively. Find the condition that there is no transport of fluid over the surface of the sphere $x^2 + y^2 + z^2 = c_1c_2$ [3]

(d) Define Stokes stream function and explain its physical significance. [3]

- (e) Write the tensor form of Navier-Stokes equation.
- (2) (a) Show that vortex lines and tubes cannot originate or terminate at internal points in a fluid. [3]
 - (b) For a fluid moving in a fine tube of variable section A, prove from first principles that the equation of continuity is

$$A\frac{\partial\rho}{\partial t} + \frac{\partial}{\partial s}(A\rho v) = 0$$

where v is the speed at a point P of the fluid and s the length of the tube up to P. [4]

- (c) Show that at any point P of a moving inviscid fluid the pressure p is same in all directions. [7]
- (3) (a) If ϕ_P denotes the potential at any point P of the fluid, then prove that $\phi_P \to C$ as $P \to \infty$, where C is a constant. [7]
 - (b) State and prove Kelvin's circulation theorem. Also show that in a circuit \mathscr{C} of fluid particles moving under the same conditions as in the Kelvin's circulation theorem, $\int_{\mathcal{C}} n \mathcal{L} ds$ is constant, where S is an open surface with \mathscr{C} as rim. [5+2]

(4) (a) State and prove Weiss's sphere theorem.

[5]

	(b)	Determine the Stokes's stream function for uniform line source alon \overrightarrow{OZ} .	1g 5]
	(c)	Determine the condition for a surface to be a possible boundary for moving fluid.	a. [4]
(5)	(a)	Define the coefficient of viscosity and determine its dimension.	[2]
	(b)	Define a line vortex. Also, obtain the complex velocity potential for line doublet. [2+	-4]
	(c)	State and prove theorem of Blasius.	[6]
(6)	(a)	Define the stress matrix. Show that the stress matrix is diagonally symmetric and contains only six unknowns. [2+	m- -5]
	(b)	Find relations between stress and rate of strain. Also, write the tens form of stresses. [54	sor -2]
(7)	(a)	Find the dimension of Stokes's stream function.	[2]
	(b)	Assuming there is no slip between the fluid and either boundary a neglecting body forces, deteremine the mean velocity of viscous inco ressible fluid under steady flow between parallel planes.	ind m- [6]
	(c)	If $w = f(z)$ is the complex potential for a two-dimensional motion hav no rigid boundaries and no singularities of flow within the circle $ z =$ show that on introducing the rigid boundary $ z = a$ into the flow, new complex potential is given by $w = f(z) + \overline{f(a^2/z)}$ for $ z \ge a$.	ing = a, the [6]

- 2-