Your Roll Number:

Department of Mathematics, University of Delhi M.A./M.Sc. Mathematics Examinations, May 2023

Part II Semester IV

MMath18- 401(i): Advanced Group Theory (UPC 223502401) Maximum Marks: 70 Time: 3 hours Instructions: • Write your roll number on the space provided at the top of this page immediately on receipt of this question paper • Q 1 is compulsoty • Answer any four questions from Q2 to Q7. • Each question carries 14 marks. (1) (a) Show that the additive group of rational numbers Q has neither $[3\frac{1}{2} \text{ Marks}]$ ascending chain condition (acc) nor descending chain condition (dcc). $[3\frac{1}{2} \text{ Marks}]$ (b) Show that a free abelian group with two generators is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$. $[3\frac{1}{2} \text{ Marks}]$ (c) Let H be a nontrivial normal subgroup of a p-group G. Show that $H \cap Z(G) \neq 1$. $\begin{bmatrix} 3\frac{1}{2} \text{ Marks} \end{bmatrix}$ (d) Let π be set of primes. Define π -group and give an example that, for $|\pi| \geq 2$, a π -subgroup of a group need not exist. (2) (a) Let G be a finite group and $H \subseteq Z(G)$. Prove that F(G/H) =[6 Marks] F(G)/H, where F(G) denotes Fitting subgroup of G. [8 Marks] (b) Let G be a finite group having p-complement for every prime divisor p of |G|. If G has a nontrivial proper normal subgroup then show that G is solvable. [8 Marks] (3) (a) Prove that minimal normal subgroup of a group of odd order is elementary abelian. [6 Marks] (b) Let G be a nilpotent group of class 2. Prove that for $a \in G$, the map $\phi: G \to G$, defined by $\phi(x) = [a, x]$, is a homomorphism. Deduce that $C_G(a) \triangleleft G$. [6 Marks] (4) (a) Give three examples of indecomposable groups which are not simple. Justify. (b) Define presentation of a group. Give two presentations of a cyclic [8 Marks] group of order 15.

(5) (a) Let A, B and C be subgroups of a group G. If two of the commu-

is also contained in N.

tator subgroups [A, B, C], [B, C, A] and [C, A, B] are contained in a normal subgroup N of G then show that third commutator

[6 Marks]

- (b) Let ϕ and ψ be two normal endomorphisms on a finite simple group G. If $\phi + \psi$ is an endomorphism of G then show that it is nilpotent.
- (6) (a) Prove that every finite group has a unique maximal normal nilpotent subgroup. [9 Marks]
 - (b) Let G be a finite group such that $G/\Phi(G)$ is nilpotent, where $\Phi(G)$ is the Frattini subgroup of G. Show that G is nilpotent. [5 Marks]
- (7) (a) Let T be a group of order 12 which is generated by two elements x and y such that $x^6 = 1$ and $y^2 = x^3 = (xy)^2$. Show that T is a semidirect product of \mathbb{Z}_3 by \mathbb{Z}_4 .
 - (b) Show that every two normal series of an arbitrary group have [8 Marks] refinements that are equivalent.

Department of Mathematics University of Delhi, Delhi

M.A./M.Sc. Mathematics, Part-II, Semester-IV Examination, May 2023

Paper: MMATH18 401(ii) Algebraic Number Theory Unique Paper Code: 223502402

		Offique Paper Code: 225502402	
Tim	e: 3	Hour Maximum Marks: 'A	70
Not equa	e: • d ma	Attempt five questions in all. • Question 1 is compulsory. • All questions carriers.	ry
1.	(a)	Let $K = \mathbb{Q}(\theta)$ be a number field of degree n and $m \in \mathbb{Z}$. Show that $\Delta[1, \theta, \dots, \theta^{n-1}]$ $\Delta[1, \alpha, \dots, \alpha^{n-1}]$, where $\alpha = m + \theta$.] = 3)
	(b)	Let K be a number field of degree 2 such that all the elements of K have a nonnegative norm. Prove that K must be imaginary.	n- 2)
	(c)	Prove that every non-zero prime ideal of \mathcal{O}_K , the ring of algebraic integers of	
	(d)	Is the set $L = \{m + en \mid n, m \in \mathbb{Z}\}$, where $e = \sum_{n=1}^{\infty} \frac{1}{n!}$, a lattice in \mathbb{R} ? Justify. (3)	3)
	(e)	Give an example of a number field whose class number is different from 1.	3)
2.	(a)	Let K be a number field and $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ a \mathbb{Q} -basis of K consisting of algebra integers. Show that the discriminant $\Delta(\alpha_1, \alpha_2, \dots, \alpha_n)$ is a non-zero integer. (9)	ic 9)
	(b)	Find all monomorphisms and conjugate fields of (i) $\mathbb{Q}(\sqrt[3]{p})$ and (ii) $\mathbb{Q}(\sqrt[4]{p})$, when p is a prime number.	12
3.	(a)	Find an integral basis and the discriminant of the number field $K = \mathbb{Q}(\sqrt{d})$, when d is a square-free integer.	-
	(b)	For $K = \mathbb{Q}(\sqrt[4]{3})$ and $L = \mathbb{Q}(\sqrt{3})$ calculate $N_{K/L}(\sqrt{3})$ and $N_{K/\mathbb{Q}}(\sqrt{3})$. (4)	Į)
4.	(a)	Give some necessary and sufficient condition under which the ring of algebraintegers of a number field K is norm Euclidean. (7)	
	(b)	Show that 6 and $2(1+\sqrt{-5})$ both have 2 and $1+\sqrt{-5}$ as factors but they do no have a highest common factor in $\mathbb{Z}[\sqrt{-5}]$. Do they have a least common multiple Justify.	ot ?
5.	(a)	Let K be a number field and \mathcal{O}_K its ring of algebraic integers. Prove that every non-zero ideal of \mathcal{O}_K can be uniquely written as a product of finitely many primities of \mathcal{O}_K . (10)	e
	(b)	Let K be a number field and I an ideal of \mathcal{O}_K , the ring of algebraic integers of K . Prove that if m is the least positive integer in I , then $m \mid N(I)$. (4)	

6.	(a)	Find all	fractional	ideals	of Z	and	$\mathbb{Z}[\sqrt{-1}]$].
----	-----	----------	------------	--------	------	-----	-------------------------	----

(4)

(b) State and prove Minkowski's Theorem.

(6)

- (c) Show that the volume of a fundamental domain of a given lattice is independent of the set of generators chosen. (4)
- 7. (a) Let K be a number field and \mathcal{O}_K its ring of algebraic integers. Prove that every non-zero ideal A of \mathcal{O}_K is equivalent to an ideal whose norm is $\leq (2/\pi)^t \sqrt{|\Delta_K|}$ and use it to deduce that class number of K is finite.
 - (b) Let K be a number field of degree n=s+2t, with \mathcal{O}_K its ring of algebraic integers. Suppose that for every prime $p\in\mathbb{Z}$ with $p\leq (\frac{4}{\pi})^t\frac{n!}{n^n}\sqrt{|\Delta_K|}$ every prime ideal of \mathcal{O}_K dividing $\langle p\rangle$ is principal. Prove that K has class number 1. Use it to show that the class number of $\mathbb{Q}(\zeta)$ is 1, where ζ is a primitive 5th root of unity. (6)

Your Roll Number:....

Department of Mathematics, University of Delhi M.A./ M.Sc. Mathematics, Semester Exam, May 2023 Part-II, Semester IV MMATH18-401(iii): Simplicial Homology Theory Unique paper code: 223502403

Time: 3 hours

Max marks: 70

Instructions: • All the symbols have their usual meaning. • Question No.1 in Part - A is compulsory. Answer any four questions from remaining six questions in Part - B.

Part A, Coumpulsory:

- 1. Choose the appropriate options:
 - (a) Let $A = \{a_0, a_1, \dots, a_k\}, k \geq 1$ be a geometrically independent subset of \mathbb{R}^n , n sufficiently large and $\mathbb H$ be a hyperplane generated by A . Then which of the following statements are correct:
 - A. \mathbb{H} must be a subspace of \mathbb{R}^n .
 - B. Barycentric coordinates of elements of H must be unique.
 - C. Dimension of \mathbb{H} can not be k-1.
 - D. The hyperplane generated by A may not be unique.
 - (b) Let K and L be two triangulations of a polyhedron X. Then which of the following statements are correct:
 - A. $C_p(K) \cong C_p(L)$, for all $p \geq 0$.
 - B. Homology groups of K are independent of orientation upto isomorphism.
 - C. $\operatorname{mesh}(K) = \operatorname{mesh}(L)$.
 - D. $H_p(K) \cong H_p(L)$, for all $p \geq 0$.
 - (c) Which of the following statements are correct:
 - A. The 1st Betti number of torus is 2.
 - B. The Euler's character of torus is zero.
 - C. The 2nd homology group of torus is trivial.
 - D. Torus is not a 2-pseudomanifold.
 - (d) Let $f: \mathbb{S}^n \to \mathbb{S}^n$, $n \geq 1$ be a continuous map. Then which of the following statements are correct:
 - A. If $deg(f) = \pm 1$, then f has a fixed point.
 - B. \mathbb{S}^n is not contractible.
 - C. If f is the antipodal map, then $deg(f) = (-1)^{n+1}$.
 - D. The degree of f can not be zero.
 - (e) Which of the following statements are correct:
 - A. A 2-simplex is a simple polyhedron.
 - B. For a simplicial complex K, the homologous relation on $Z_p(K)$ is an equivalence relation.
 - C. If $\phi: K \to L$ is a simplicial approximation to a continuous map $f: |K| \to |L|$, then $f(\operatorname{st}(v)) \subseteq \operatorname{st}(\phi(v))$ for all vertex $v \in K$.
 - D. Homotopic spaces are homeomorphic.

- (f) Let K and L be two simplicial complexes in \mathbb{R}^n . Which of the following statements are correct:
 - A. If |K| is convex then the 0^{th} homology group of K is trivial.
 - B. If $f: |K| \to |L|$ is a homeomorphism then the induced map $f_p^*: H_p(K) \to H_p(L)$ is a group isomorphism for all $p \ge 0$.
 - C. If |K| is convex, then |K| has fixed point property.
 - D. |L| is homeomorphic to \mathbb{R}^n .
- (g) Choose the incorrect statements:
 - A. \mathbb{D}^n , $n \geq 1$ is a retract of \mathbb{R}^n .
 - B. \mathbb{D}^3 is a rectilinear polyhedron.
 - C. A simple regular polyhedron can have 8-vertices, 12-edges and 6-faces.
 - D. Every polyhedron is a rectilinear polyhedron.

(2 X 7 = 14)

Part B, Attempt any FOUR questions from the following:

- (a) Show that the interior of a simplex is an open set in the hyperplane spanned by the vertices
 of that simplex. (10)
 - (b) Prove that $\lim_{n\to\infty} \operatorname{mesh}(K^n) = 0$, where K^n is the n^{th} barycentric subdivision of K. (4)
- 3. (a) Let K be an oriented simplicial complex and σ^{p-2} be a p-2 face of a simplex σ^p of K. Show that $\sum [\sigma^p, \sigma^{p-1}][\sigma^{p-1}, \sigma^{p-2}] = 0$, where summation is over all p-1 simplexes σ^{p-1} of K.
 - (b) Let $K = \{\langle a_0 \rangle, \langle a_1 \rangle, \langle a_2 \rangle, \langle a_3 \rangle, \langle a_0, a_1 \rangle, \langle a_1, a_2 \rangle, \langle a_0, a_2 \rangle, \langle a_1, a_3 \rangle, \langle a_2, a_3 \rangle, \langle a_0, a_1, a_2 \rangle\}$ be a simplicial complex with orientation $a_0 < a_1 < a_2 < a_3$. Compute all homology groups of K.
- 4. (a) If $\phi_p, \psi_p : C_p(K) \to C_p(L)$ are chain homotopic chain mappings from C(K) to C(L) then show that the induced homomorphisms $\phi_p^*, \psi_p^* : H_p(K) \to H_p(L)$ are equal for all $p \ge 0.(5)$
 - (b) Let K and L be two simplicial complexes and $f:|K|\to |L|$ be a continuous map. Define the induced sequence of homomorphism $f_p^*:H_p(K)\to H_p(L),\ p\geq 0$. Prove that two homeomorphic spaces have same homology groups upto an isomorphism and conclude that \mathbb{S}^n is not homeomorphic to \mathbb{S}^m for $n\neq m$. (2+5+2)
- 5. Define a coherent orientation on an n-pseudomanifold K. Show that \mathbb{S}^n , $n \geq 1$ admits a coherent orientation. Compute all homology groups of \mathbb{S}^n . (2+4+8)
- 6. (a) State and prove Brower's degree theorem. (10)
 - (b) Use the Brower's degree theorem to show that every polynomial of positive degree with complex coefficients has a root in C. (4)
- 7. (a) Let S be a simple polyhedron with V vertices, E edges and F faces. Then show that V E + F = 2. (7)
 - (b) State Lefschetz fixed point theorem and from this deduce Brower's fixed point theorem.

(2+5)

DEPARTMENT OF MATHEMATICS M. A./M. SC. MATHEMATICS PART (II) -SEMESTER IV FINAL EXAMINATION, MAY, 2023

MMATH18- 402(I) ABSTRACT HARMONIC ANALYSIS, UPC: 223502405

Time: 3 HOURS Maximum Marks: 70

- Attempt five questions in all. Question No. 1 is compulsory. Attempt any four from the remaining six questions. • All the questions carry equal marks. • All the symbols have their usual meanings.
 - (1) (a) Prove that the left regular representation of a locally compact group G on $L^2(G)$ is unitary. (3)
 - (b) For $\mu \in M(G)$, define μ^* , and prove that $\|\mu^*\| = \|\mu\|$. (3)
 - (c) For a locally compact abelian group G, prove that dual group \hat{G} is an abelian group. (3)
 - (d) Prove that (f * g) * h = f * (g * h), for all $f, g, h \in L^1(G)$. (3) (e) Prove that the function $\phi : \mathbb{R} \to \mathbb{C}$ defined as $\phi(x) = e^{i\sqrt{2}x}$, $x \in \mathbb{R}$ is positive definite.(2)
 - (2) (a) Let G be a locally compact abelian group, $\mu \in M(\hat{G})$ be a positive measure and ϕ_{μ} : $G \to \mathbb{C}$ be defined as $\phi_{\mu}(x) = \int_{\hat{G}} \chi(x) d\mu(\chi)$, $x \in G$. Prove that ϕ_{μ} is continuous and is of positive type.
 - (b) Let π_1 and π_2 be isomorphic irreducible unitary representations of G. Prove that $\mathcal{C}(\pi_1, \pi_2)$ is one dimensional.
 - (3) (a) Let G be a locally compact group and $x \in G$. Prove that there exists a positive real number $\Delta(x)$ such that for every left Haar measure μ on G, $\mu(Ex) = \Delta(x)\mu(E)$, E being a Borel set. Further prove that the map $\Delta: G \to \mathbb{R}^+$ is a group homomorphism. (4+3)
 - (b) For $n \in \mathbb{N} \cup \{0\}$, consider the unitary representation $\pi_n : SU(2) \to B(H_n)$ defined as $\pi_n(A)(f(z)) = f(zA), A \in SU(2), H_n$ being the space of homogenous polynomials of degree n of two variables. Prove that π_n is irreducible.
 - (4) (a) Let G be a compact group, $[\pi] \in \hat{G}$ and $f \in L^2(G)$. Define \hat{f} , the Fourier transform of f. Prove that
 - (i) $\widehat{f * g}(\pi) = \widehat{g}(\pi)\widehat{f}(\pi), \quad g \in L^2(G)$
 - (ii) $\widehat{L_x f}(\pi) = \widehat{f}(\pi)\pi(x^{-1}), x \in G.$
 - (b) Let G be a locally compact group. Prove that there exists a norm decreasing mapping from $L^1(G)$ into M(G), the Banach algebra of complex regular Borel measures on G. (7)
 - (5) (a) Let ρ be a non-degenerate *-representation of $L^1(G)$ on a Hilbert space H, G being a locally compact group. Prove that ρ is an integrated representation of a unitary representation of G on H. (10)

ABSTRACT HARMONIC ANALYSIS

	(b) Let π be a unitary representation of a locally compact group G , $u \in H_{\pi}$. function ϕ defined as $\phi(x) = \langle \pi(x)u, u \rangle, x \in G$ is of positive type.	Prove	that the (4)
(6)	(a) Prove that the dual group of \mathbb{Z} is (group) isomorphic to the circle group (b) State and prove Schur's orthogonality relations.	S^1 .	(6) $(2+6)$
-			

(7) (a) Prove that {χ_π : [π] ∈ Ĝ} is an orthonormal basis of ZL²(G).
(b) Let ε = span{π_{ij} : π is a finite dimensional unitary representation of G, i, j = 1, ... d_π}, G being a compact group. Prove that ε is a subalgebra of C(G).
(6)

Your Roll	Number:	
	T CELLINGI.	

No. of Printed Pages 2

M.A./M.Sc. Mathematics Examinations, May 2023 Part II Semester IV MMATH18-402(ii): Frames and Wavelets

Time: 3 hours

Maximum Marks: 70

Instructions: • Write your roll number on the space provided at the top of this page immediately on receipt of this question paper. • Attempt FIVE questions in all. • Question No. 1 is Compulsory. • Each question carries 14 marks. • \mathcal{H} denote an infinite dimensional separable Hilbert space.

• Symbols have their usual meaning.

Question No. 1 is Compulsory

- (1) (a) Give an example, with justification, of a sequence in $\ell^2(\mathbb{N})$ which is not Bessel but satisfies the lower frame condition. [3 Marks]
 - (b) Give an example, with justification, of a frame for an infinite dimensional Hilbert space which is ω -independent but minimal. [3 Marks]
 - (c) What is the relation between the optimal frame bounds of a frame $\{f_k\}_{k=1}^m$ for \mathbb{C}^n and eigenvalues of the frame operator of $\{f_k\}_{k=1}^m$? Explain.
 - (d) Define Gabor frame for $L^2(\mathbb{R})$. Give an example, with justification, of a Gabor frame for $L^2(\mathbb{R})$ which is not exact. [1+3=4] Marks]

Answer any Four questions from Q. No. 2 to Q. No. 7.

- (2) (a) Show that if $\{f_k\}_{k=1}^m$ is a frame for \mathbb{C}^n , then there exist n-1 vectors $\{h_j\}_{k=2}^n\subset\mathbb{C}^n$ such that $\{f_k\}_{k=1}^m\bigcup\{h_j\}_{k=2}^n$ forms a tight frame for \mathbb{C}^n .
 - (b) State and prove the frame algorithm. Also give an application, with justification, of the frame algorithm. [6 + 2 = 8] Marks]
- (3) (a) Show that if $\{f_k\}_{k=1}^{\infty} \subset \mathcal{H}$ and B is a positive real number such that $\sum_{k=1}^{\infty} |\langle f_j, f_k \rangle| \leq B$ for each $j \in \mathbb{N}$, then $\{f_k\}_{k=1}^{\infty}$ is a Bessel sequence with Bessel bound B.
 - (b) State and prove the frame minus one theorem.

[2+6=8 Marks]

(4) (a) State and prove the Haar reconstruction formula.

[6 Marks]

(b) Show that every frame for \mathcal{H} is a multiple of a sum of three orthonormal bases for \mathcal{H} .

[8 Marks]

- (5) (a) Show that if $\{f_k\}_{k=1}^{\infty}$ is a frame for \mathcal{H} with frame operator S, then $\{S^{-1/2}f_k\}_{k=1}^{\infty}$ is a Parseval frame for \mathcal{H} .
 - (b) Give an example, with justification, of a frame for $\ell^2(\mathbb{N})$ which is not a Riesz basis for $\ell^2(\mathbb{N})$. What is the relation between Schauder bases and Riesz bases? Justify your answer.
- (6) (a) Show that the coefficient functionals associated with a Schauder basis for an infinite dimensional Banach X space are continuous. [4 Marks]
 - (b) Prove that if $\{f_k\}_{k=1}^{\infty}$ be a frame for \mathcal{H} with frame operator S, then dual frames of $\{f_k\}_{k=1}^{\infty}$ are precisely the families

$$\{g_k\}_{k=1}^{\infty} = \left\{ S^{-1} f_k + h_k - \sum_{j=1}^{\infty} \langle S^{-1} f_k, f_j \rangle h_j \right\}_{k=1}^{\infty},$$

where $\{h_k\}_{k=1}^{\infty}$ is a Bessel sequence in \mathcal{H} .

- (7) (a) Show that if range of the synthesis operator associated with a sequence $\{f_k\}_{k=1}^{\infty} \subset \mathcal{H}$ is closed, then $\{f_k\}_{k=1}^{\infty}$ is a frame sequence. [6 Marks]
 - (b) Define multiresolution analysis (MRA). Give an example, with justification, of an MRA in $L^2(\mathbb{R})$. [2+6=8 Marks]

Your Roll Number:

Department of Mathematics, University of Delhi M.A./M.Sc. Mathematics Examinations, May 2023 Part II Semester IV

MMATH18-402 (iii): Operators on Hardy Hilbert Space

Unique Paper Code: 223502407

Time: Three hours Maximum Marks: 70

Instructions: • Write your roll number on the space provided at the top of this page immediately on receipt of this question paper • Question 1 is compulsory • Attempt 4 questions from the remaining six questions • All symbols have their usual meaning.

- (1) (a) Give a non-trivial example of a function which is in $H^{\infty}(\mathbb{D})$. Does it also lie in $H^{2}(\mathbb{D})$? (2)
 - (b) Let $T: H^2(\mathbb{D}) \to H^2(\mathbb{D})$ be given by $(Tf)(z) = z^2 f(z)$. $z \in \mathbb{D}$. Check whether or not T is an isometry. (3)
 - (c) Give an example of (i) an inner function which has exactly four distinct zeros in \mathbb{D} , (ii) an inner function which has a countably infinite number of zeros in \mathbb{D} , justifying your answers. (3)
 - (d) Let T = 2I 3U, where U is the unilateral shift on $\tilde{H}^2(S^1)$. Show that T is a Toeplitz operator and find its symbol. (3)
 - (c) Find the matrix of the operator W + J, where W is the bilateral shift and J is the flip operator, w.r.t the standard orthonormal basis of $L^2(S^1)$.

Section B

Attempt four questions in all from this section.

- (2) (a) State Fatous' Theorem. Use it to show that if $f \in H^2(\mathbb{D})$ then $\lim_{r\to 1^-} f\left(re^{i\theta}\right) = \tilde{f}(e^{i\theta})$, for almost all θ , where \tilde{f} is the boundary function of f.
 - (b) Let $f(z) = \frac{1}{3}(1+z^2), z \in \mathbb{D}$. Verify that $f \in H^2(\mathbb{D})$ and find \tilde{f} the boundary function of f. Is f an inner function? (3)
 - (c) Show that any non-zero function in $H^2(\mathbb{D})$ may be written as a product of an inner and an outer function. (6)
- (3) (a) Let $M_z: H^2(\mathbb{D}) \to H^2(\mathbb{D})$ be given by $(M_z(f))(z) = zf(z), z \in \mathbb{D}$. Show that this operator is bounded and find its adjoint. (5)
 - (b) Prove that the bilateral shift W defined on $l^2(\mathbb{Z})$ is unitarily equivalent to the operator M on $L^2(S^1)$ where M is given by $(Mf)(e^{i\theta}) = e^{i\theta} f(e^{i\theta})$. Find the adjoint W^* of W acting on $l^2(\mathbb{Z})$.
 - (c) Is the subspace $\tilde{H}^2(S^1)$ of $L^2(S^1)$ invariant under the adjoint of the bilateral shift? Justify. (2)
- (4) For $\phi \in L^{\infty}(S^1)$ let M_{ϕ} be defined by $M_{\phi}f = \phi f$ for $f \in L^2(S^1)$.

- (a) Prove that a bounded linear operator A on $L^2(S^1)$ is equal to M_{ϕ} if and only if the matrix of A with respect to the standard basis in $L^2(S^1)$ is a Toeplitz matrix. (4)
- (b) Find the commutant of the unilateral shift acting on $\tilde{H}^2(S^1)$.(7)
- (c) Show that $JPJ = M_{e_1}(I-J)M_{e_{-1}}$ where J is the flip operator and P the orthogonal projection of $L^2(S^1)$ onto $\tilde{H}^2(S^1)$. (3)
- (5) (a) When is the product of two Toeplitz operators again a Toeplitz operator? Justify. (6)
 - (b) Find a $\psi \in L^{\infty}(S^1)$ such that $T_{\phi}T_{\psi} = T_{\psi}T_{\phi}$ when (i) $\phi(e^{i\theta}) = e^{3i\theta} 2e^{i\theta}$ (ii) $\phi(e^{i\theta}) = e^{-3i\theta} + e^{-i\theta}$ (iii) $\phi(e^{i\theta}) = e^{-i\theta} + 1 + e^{i\theta}$. (6)
 - (c) Find the adjoint of the Toeplitz operator T_{ϕ} where $\phi \in L^{\infty}(S^1)$.

 (2)
- (6) (a) Prove a necessary and sufficient condition, (involving the unilateral shift) for an operator A to have a Hankel matrix with respect to the standard basis of $\tilde{H}^2(S^1)$. (4)
 - (b) Show that $k_{\bar{w}} \otimes k_w$ is a Hankel operator of rank one, where $w \in \mathbb{D}$. Find a symbol of such a Hankel operator. (6)
 - (c) Show that for every $\phi \in L^{\infty}(S^1)$, $H_{\phi^*} = H_{\phi}^*$. (4)
- (7) (a) For $f \in L^2(S^1)$, let $\check{f}(e^{i\theta}) = f(e^{-i\theta})$. For $\phi, \psi \in L^{\infty}$, suppose that there exist constants a, b such that $P\check{\phi} = ak_{\overline{w}}$ and $P\overline{\psi} = bk_w$. Show that then both H_{ϕ} and H_{ψ} are multiples of the operator $k_{\overline{w}} \otimes k_w$.
 - (b) Prove that the product of two Hankel operators is a Toeplitz operator only if at least one of the Hankel operators is 0. (5)
 - (c) For $\phi, \psi \in L^{\infty}$, show that

$$H_{e_1\check{\phi}}H_{e_1\psi}=T_{\phi\psi}-T_{\phi}T_{\psi}.$$

(3)

Roll Number:

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI

M.A./M.Sc. Examinations, May-2023

MMATH18-402 (iv): THEORY OF UNBOUNDED OPERATORS (UPC NO. 223502408)

Time: 3 hours

Maximum Marks: 70

Instructions: • Attempt five questions in all. • Question 1 is compulsory. • All the symbols have their usual meaning unless otherwise specified.

Throughout this paper, H will be a complex Hilbert space and X will be a Banach space.

- **Q1.** (a) For a densely defined linear operator $T: \mathcal{D}(T) \subset H \to H$, show that [3 Marks] $\mathcal{N}(T^*) = \mathcal{R}(T)^{\perp}$.
 - (b) Show that the Hilbert-adjoint operator T^* of a densely defined linear operator $T: \mathcal{D}(T) \subset H \to H$ is closed. [3 Marks]
 - (c) Prove that the infinitesimal generator of a uniformly continuous semigroup is bounded. [4 Marks]
 - (d) Let T(t) and S(t) be C_0 semigroups of bounded linear operators with infinitesimal generators A and B respectively. If A = B then show that T(t) = S(t) for $t \ge 0$.
- **Q2.** (a) Let $T: H \to H$ be a linear operator such that $\langle Tx, y \rangle = \langle x, Ty \rangle$ for all $x, y \in H$. Prove that T is bounded.
 - (b) Let $T: \mathcal{D}(T) \to \ell^2$, where $\mathcal{D}(T) \subset \ell^2$ consists of all $x = (\xi_j)$ with only finitely many nonzero terms ξ_j and $y = (\eta_j) = Tx = (j\xi_j)$. Show that T is unbounded. Check whether T is closed or not. Justify your answer.
- Q3. (a) Let $T: \mathcal{D}(T) \subset H \to H$ be a self-adjoint densely defined linear operator. [8 Marks] Show that a number λ belongs to the resolvent set $\rho(T)$ of T if there exists a c > 0 such that for every $x \in \mathcal{D}(T)$, $\|(T \lambda I)x\| \ge c\|x\|$.
 - (b) If $T: \mathcal{D}(T) \subset H \to H$ is a symmetric linear operator, show that its [6 Marks] Cayley transform exists and is isometric.
- **Q4.** (a) Show that the multiplication operator $T: \mathcal{D}(T) \subset L^2(-\infty, +\infty) \to L^2(-\infty, +\infty)$, $x \mapsto tx$, has no eigenvalues and the spectrum $\sigma(T)$ of T is all of \mathbb{R} .

MMATH18-402 (iv): Theory of Unbounded Operators (UPC NO. 223502408) 2-

- (b) Give an example to show that the resolvent set of the infinitesimal generator of a C_0 semigroup of contractions need not contain more than the open right half-plane.
- [6 Marks]

Q5. State and prove the Lumer-Phillips Theorem.

[14 Marks]

- **Q6.** (a) Prove that a linear operator A is the infinitesimal generator of a C_0 semigroup $\{T(t): t \geq 0\}$ satisfying $\|T(t)\| \leq M$ $(M \geq 1)$ if and only if
- [8 Marks]

[6 Marks]

- (i) A is closed and D(A) is dense in X.
- (ii) The resolvent set $\rho(A)$ of A contains \mathbb{R}^+ and

$$||R(\lambda : A)^n|| \le \frac{M}{\lambda^n}$$
; for $\lambda > 0$, $n = 1, 2, ...$

- (b) Let $\{T(t): t \geq 0\}$ be a C_0 semigroup of bounded operators. If $0 \in \rho(T(t_0))$ for some $t_0 > 0$ then show that $0 \in \rho(T(t))$ for all t > 0, and T(t) can be embedded in a C_0 group.
- Q7. (a) Prove that a linear operator A is the infinitesimal generator of a C_0 [8 Marks] group of unitary operators on a Hilbert space H if and only if iA is self-adjoint.
 - (b) Let A be a linear densely defined operator in X. If $\lambda \in \rho(A)$, then prove that $\lambda \in \rho(A^*)$ and $R(\lambda : A^*) = R(\lambda : A)^*$.

Your Roll No:....

M.A/M.Sc. Mathematics, Part-II, Sem-IV (May, 2023) MMATH18-403(i), Calculus on \mathbb{R}^n Unique Paper Code: 223502409

Time: 3 hours Maximum Marks: 70

Question No. 1 is compulsory. Attempt any four questions from Question Nos. 2 to 7. Unless otherwise mentioned, U will be an open subset of \mathbb{R}^n .

- (1) (a) Let $f(x, y, z) = x^2yz xyz^3$ be a function and a = (-2, -1, 1). Find the directional derivative of f at a with respect to vector u = (0, 4, -3).
 - (b) Consider the following function $f: \mathbb{R}^2 \to \mathbb{R}$ [3]

$$f(x,y) = \begin{cases} 1 & \text{if } xy = 0 \\ 0 & \text{if } xy \neq 0. \end{cases}$$

Find the points at which f is continuous and the points at which $\frac{\partial f}{\partial x}$ exists.

- (c) State the implicit function theorem.
- (d) Suppose α and β are k- and m-forms, respectively, of class C^1 in U. If α is closed and β is exact, then prove that $\alpha \wedge \beta$ is also exact. [3]
- (e) Suppose $k \geq 2$ and $\sigma = [P_0, P_1, \dots, P_k]$ is an oriented affine k-simplex. Prove that $\partial(\partial \sigma) = 0$.
- (2) (a) Let $f: U \to \mathbb{R}^n$ be a one-one function of class C^r . Further, let Df(x) be non-singular at each point $x \in U$ and let V = f(U). Show that f^{-1} is continuous on V. [7]
 - (b) Prove that if U is also connected, and $f: U \to \mathbb{R}$ is differentiable such that Df(x) = 0 for all $x \in U$, then f is a constant. Is still f a constant if U is not connected? Justify your answer. [5]
 - (c) Let ω and λ be a k- and m- forms respectively. Show that $\omega \wedge \lambda = (-1)^{km} \lambda \wedge \omega$. [2]
- (3) (a) Let ω be a k-form and λ be a m-form of class C^1 in U. Prove that $d(\omega \wedge \lambda) = d\omega \wedge \lambda + (-1)^k \omega \wedge d\lambda.$ [5]
 - (b) Suppose that $F: U \to \mathbb{R}^n$ is of class $C^1, 0 \in U, F(0) = 0$ and F'(0) is invertible. For $1 \le m \le n$ show that there is a neighborhood V_m of $0 \in \mathbb{R}^n$ and a C^1 -map $F_m: V_m \to \mathbb{R}^n$ such that $F_m(0) = 0, F'_m(0)$ is invertible and $P_{m-1}F_m(x) = P_{m-1}(x)$ for all $x \in V_m$, where P_m is the projection of first m-components. [5]
 - (c) Let $f: \mathbb{R}^5 \to \mathbb{R}^3$ be of class $C^1, a = (1, 0, -1, 2, -2), f(a) = \mathbf{0}$ and [4]

$$Df(a) = \begin{bmatrix} 2 & -1 & 0 & 1 & 0 \\ 2 & 0 & 1 & -1 & 0 \\ 0 & 1 & 2 & 1 & -1 \end{bmatrix}.$$

- (i) Show that there is a neighborhood V of (1,0) in \mathbb{R}^2 and a C^1 -map $\varphi: V \to \mathbb{R}^3$ such that $\varphi(1,0) = (-1,2,-2)$ and $f(x,\varphi(x)) = 0, \forall x \in V$.
- (ii) Find $D\varphi(1,0)$.

1

- (4) (a) Let ω be an exact 1-form in U and γ be a closed smooth curve in U. Prove that $\omega(\gamma) = 0$.
 - (b) Let $a \in U$. Show that $f: U \to \mathbb{R}^n$ is differentiable at a if and only if each component function f_i of f for $1 \le i \le n$ is differentiable at a. [4]
 - (c) Define T(s,t) = (x,y), where x = s st and y = st. Let $S = \{(s,t)|0 < s < 1, 0 < t < 1\}$

be a square. Show that T is one-one on S and find Q = T(S). Let $f(x,y) = \frac{e^{x+y}}{x+y}$ be defined on Q, then find the integration f on the region Q by using the change of variable with respect to T.

- (5) (a) Let $\omega = \sum_{I} b_{I}(x) dx_{I}$ be the standard presentation of a k-form in U. If $\omega = 0$ in U, then prove that $b_{I}(y) = 0$ for every increasing k-index I and for every $y \in U$.
 - (b) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by

$$(x, y, z) = T(u, v) = \frac{(2u, 2v, u^2 + v^2 - 1)}{1 + u^2 + v^2}$$

and $\omega=xdy\wedge dz+ydz\wedge dx+zdx\wedge dy$ be a 2-form in \mathbb{R}^3 . Compute the pull back ω_T .

(c) Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be such that f(a) = (1,2) and [2]

$$Df(a) = \left[\begin{array}{rrr} -2 & 1 & 2 \\ -1 & 1 & 3 \end{array} \right].$$

Let $g: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $g(x,y) = (x^2 - y^2, 4xy, y^3)$. Find $D(g \circ f)(a)$.

(6) (a) Suppose ω is a k-form in U, ϕ is a k-surface in U with parameter domain $D \subset \mathbb{R}^k$ and Δ is the identity map on D, prove that [4]

$$\int_{\phi} \omega = \int_{\Delta} \omega_{\phi}.$$

- (b) Let $T: \mathbb{Q}^n \to \mathbb{R}^n$ be one-one and C^2 map such that $\det J_T(y) > 0$ for all $y \in \operatorname{int}(\mathbb{Q}^n)$, where \mathbb{Q}^n is the standard n-simplex in \mathbb{R}^n . Let $E = T(\mathbb{Q}^n)$. Define the positive oriented boundary of the set E. Find the positive oriented boundary of the unit square $[0,1]^2 \subset \mathbb{R}^2$.
- (c) Define the functions ψ_n for $-2 \le n \le 2$, on \mathbb{R} as follows

$$\psi_0(x) = \begin{cases} 1 + 2x, & \text{if } -\frac{1}{2} \le x < 0, \\ 1 - 2x, & \text{if } 0 \le x < \frac{1}{2}, \\ 0, & \text{otherwise.} \end{cases}$$

and $\psi_n = \psi_0(x - \frac{n}{2})$. Verify that the family $\{\psi_n, -2 \le n \le 2\}$ defines a partition of unity for the compact set [-1, 1] subordinate to the cover $\{(\frac{n}{2} - 1, \frac{n}{2} + 1), -2 \le n \le 2\}$. Sketch the graphs of ψ_n 's. [5]

- (7) (a) Let $T: U \to \mathbb{R}^m$ be a C^2 -map and ω be a k-form of class C^1 in \mathbb{R}^m . Then prove that $d(\omega_T) = (d\omega)_T$.
 - (b) Let ω be a k-form of class C^2 in U. Prove that $d^2\omega = 0$. [3]
 - (c) State the Stoke's theorem. Define $\Phi: [0,1]^2 \subset \mathbb{R}^2 \to \mathbb{R}^3$ as $\Phi(u,v) = (u^2,uv,v^2)$. Let $\alpha = xdy + xdz + ydz$ be a 1-form in \mathbb{R}^3 . Calculate $\int_{\Phi} d\alpha$ and $\int_{\partial\Phi} \alpha$ and verify Stoke's theorem. [7]

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI M.A./M.Sc. Mathematics Examinations, May 2023

Part II Semester IV

MMATH18-403(ii): DIFFERENTIAL GEOMETRY (Unique Paper Code 223502410)

Time: 3 hours

Maximum Marks: 70

Instructions: • Attempt five questions in all. Question 1 is compulsory. All questions carry equal marks.• The symbols used have their usual meanings.

- (1) (a) Let S be an n-surface in \mathbb{R}^{n+1} and α be a parameterized curve in S. Show that velocity vector field along α is parallel if and only if α is a geodesic. [3]
 - (b) Show that the 1-form $\eta = \frac{-x_2}{x_1^2 + x_2^2} dx_1 + \frac{x_1}{x_1^2 + x_2^2} dx_2$ in $\mathbb{R}^2 \setminus \{0\}$ is not exact. [4]
 - (c) Let S be an oriented n-surface in \mathbb{R}^{n+1} and \tilde{S} be the same surface with opposite orientation. Let $p \in S$. If L_p and \tilde{L}_p are the Wiengarten maps at p of S and \tilde{S} respectively, then what is the relation between L_p and \tilde{L}_p ? Justfy your answer.
 - (d) If $U \subseteq \mathbb{R}^n$ is open and $\varphi: U \to \mathbb{R}^m$ is a smooth map, define the differential $d\varphi$ of φ . Compute the differential $d\psi$ for the function $\psi: U \to \mathbb{R}^{n+1}$ defined by $\psi(p) = (p, f(p))$, where $f: U \to \mathbb{R}$ is a smooth map. [1+2]
 - (e) Let S be an oriented n-surface in \mathbb{R}^{n+1} , let $p \in S$ and $\{k_1(p), k_2(p), \dots, k_n(p)\}$ be the principal curvatures of S at p with the corresponding principal curvature directions $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$. Show that the normal curvature $k(\mathbf{v})$ in the direction $\mathbf{v} \in S_p$ is given by $k(\mathbf{v}) = \sum_{i=1}^n k_i(p)(\mathbf{v} \cdot \mathbf{v}_i)^2$. [2]
- (2) (a) Let S be an n-surface in \mathbb{R}^{n+1} , let $p,q\in S$ and let $\alpha:[a,b]\to S$ be a piecewise smooth curve from p to q. Show that the parallel transport $P_\alpha:S_p\to S_q$ is a vector space isomorphism that preserves dot product. [7]
 - (b) Show that the Weingarten map at each point of a parameterized n-surface in \mathbb{R}^{n+1} is self adjoint. [7]
- (3) (a) Define derivative of a smooth vector field \mathbf{X} on an n-surface S in \mathbb{R}^{n+1} with respect to $\mathbf{v} \in S_p$. If \mathbf{X} is a unit vector field, show that $\nabla_{\mathbf{v}} \mathbf{X} \perp \mathbf{X}(p)$ for all $\mathbf{v} \in S_p$, $p \in S$. If \mathbf{X} is also a tangent vector field on S, then show that for any tangent vector field \mathbf{Y} on S and for all $\mathbf{v} \in S_p$, $p \in S$, $\nabla_{\mathbf{v}}(\mathbf{X}, \mathbf{Y}) = (D_{\mathbf{v}} \mathbf{X}) \cdot \mathbf{Y}(p) + \mathbf{X}(p) \cdot (D_{\mathbf{v}} \mathbf{Y})$, and hence conclude that $D_{\mathbf{v}} \mathbf{X} \perp \mathbf{X}(p) \cdot [2+5]$
 - (b) Prove that on a compact oriented *n*-surface S in \mathbb{R}^{n+1} there exists a point p such that the second fundamental form at p is definite. [7]
- (4) (a) If S is the ellipsoid $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1$, a, b, c > 0, oriented by its inward normal, determine its Gaussian curvature K(p). [7]
 - (b) Let $S = f^{-1}(c)$ be an *n*-surface in \mathbb{R}^{n+1} , where $f: U \to \mathbb{R}$ is such that $\nabla f(q) \neq 0$, for all $q \in S$. Suppose $g: U \to \mathbb{R}$ is a smooth function and $p \in S$

is an extreme point of g on S. Show that there is a real number λ such that $\nabla g(p) = \lambda \nabla f(p)$.

(c) Let $a,b,c \in \mathbb{R}$ be such that $ac-b^2>0$. Show that the maximum and minimum values of the function $g(x_1,x_2)=x_1^2+x_2^2$ on the ellipse $ax_1^2+2bx_1x_2+cx_2^2=1$ are of the form $1/\lambda_1$ and $1/\lambda_2$, where λ_1 and λ_2 are the eigenvalues of the matrix [4]

 $A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}.$

- (5) (a) Let S be an oriented n-surface in \mathbb{R}^{n+1} and $L_p: S_p \to S_p$ be the Weingarten map. Show that there is an orthonormal basis for S_p consisting of eigenvectors of L_p .
 - (b) For $\theta \in \mathbb{R}$, let $\alpha_{\theta} : [0, \pi] \to \mathbb{S}^2$ be the parameterized curve from the north pole p = (0, 0, 1) to the south pole q = (0, 0, -1) defined by

 $\alpha_{\theta}(t) = (\cos \theta \sin t, \sin \theta \sin t, \cos t), \ 0 \le t \le \pi.$

If $\mathbf{v} = (p, 0, 1, 0) \in S_p$, determine $P_{\alpha_{\theta}}(\mathbf{v})$. [8]

- (6) (a) Let $U = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 < 1521\}$. Find the length of the connected oriented plane curve $f^{-1}(0)$ oriented by $-\frac{\nabla f}{\|\nabla f\|}$, where $f: U \to \mathbb{R}$ is defined by $f(x_1, x_2) = 12x_1 + 5x_2$.
 - (b) Let C be a curve in \mathbb{R}^2 which lies above the x_1 axis. Define the surface of revolution obtained by rotating the curve C about the x_1 axis and show that it is indeed a 2-surface in \mathbb{R}^3 . [5]
 - (c) If a parameterized curve α in the unit *n*-sphere $x_1^2 + x_2^2 + \cdots + x_n^2 = 1$ is a geodesic, then show that it is of the form $\alpha(t) = (\cos at)v + (\sin at)w$ for some orthonormal pair of vectors $\{v, w\}$ in \mathbb{R}^{n+1} and some $a \in \mathbb{R}$.
- (7) (a) Let S be a compact, connected oriented n-surface in \mathbb{R}^{n+1} such that $S = f^{-1}(c)$, where $f: \mathbb{R}^{n+1} \to \mathbb{R}$ is smooth and $\nabla f(q) \neq 0$ for all $q \in S$. Prove that the Gauss map maps S onto the unit sphere \mathbb{S}^n . [10]
 - (b) Let $\alpha(t) = (x(t), y(t)), t \in I$ be a local parameterizations of the oriented plane curve C. Show that the curvature κ satisfies $\kappa \circ \alpha = \frac{x'y^{\kappa} y'x^{\kappa}}{[(x')^2 + (y')^2]^{3/2}}$. [4]

Your Roll Number:

Department of Mathematics, University of Delhi M.A./M.Sc. Mathematics Examinations, May 2023 Part- II Semester- IV

MMATH18-403(iii): Topological Dynamics (Unique Paper Code 223502411)

Marks: 70 Time: 3 hours

Instructions: • All notations used are standard • Question no. 1 is compulsory • Attempt any four questions from the remaining six questions.

- (1) Do as directed.
 - (a) Is product of two minimal homeomorphisms defined on a compact metric space a minimal homeomorphism? Justify.
 - (b) Give an example to justify that the expansiveness of a homeomorphism depends upon the choice of metric in general. (3)
 - (c) If two $k \times k$ matrices A and B with entries in $\{0,1\}$ are irreducible, then is it necessary that their corresponding subshifts are topologically conjugate? Justify. (3)
 - (d) Is Sarkovskii's theorem true for any continuous map $f:\mathbb{S}^1\to\mathbb{S}^1$ having a periodic point of prime period three? Justify. (3)
 - (e) Justify that $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x + \sqrt{5}$ does not have POTP. (2)
- (2) (a) Let A be a $k \times k$ matrix with entries in $\{0,1\}$ such that no row/column of A is full of zeros. Prove that the shift map σ on X_A is transitive if and only if the digraph associated to A is strongly connected. (11)
 - (b) With proper justification, find stable sets of fixed points of f: $\mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3$.
- (3) (a) For the logistic map $F_{\mu}: \mathbb{R} \to \mathbb{R}$ defined by $F_{\mu}(x) = \mu x(1-x)$, prove that
 - (i) for $1 < \mu \le 2$ and $x \in (0,1)$, $\lim_{n \to \infty} F_{\mu}^{n}(x) = p_{\mu}$, (ii) For $\mu > 1$ and x < 0 or x > 1, $\lim_{n \to \infty} F_{\mu}^{n}(x) = -\infty$.
 - (7)
 - (b) Let X be a compact metric space and $f: X \to X$ be continuous. Prove that for any $x \in X$, $\omega(x) = \bigcap_{m \geq 0} \left(\overline{\bigcup_{n \geq m} \{f^n(x)\}} \right)$ and deduce that $\omega(x)$ is non-empty. Justify that if X is non-compact then $\omega(x)$ may be empty also. (7)
- (4) (a) Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and J, K closed and bounded intervals of \mathbb{R} such that $K \subseteq f(J)$ then prove that there exists a closed and bounded interval J_0 of \mathbb{R} , $J_0 \subseteq J$ such that $f(J_0) = K$.

MMATH18-403(iii): Topological Dynamics (Unique Paper Code 223502411)

- 2-

- (b) Use (a) to prove that if f has a periodic point of prime period three then f has a periodic point of all prime period $n \ge 1$. (9)
- (5) (a) Prove that the closed unit disc $\mathbb{D} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ does not admit any expansive homeomorphism. (8)
 - (b) Let (X, d) be a subspace of a metric space (Y, d) and $h: X \to X$ be an expansive homeomorphism with expansive constant δ . Prove that a homeomorphic extension f of h to Y is expansive on Y with expansive constant δ if the following conditions are satisfied:
 - (i) $f_{|_{(Y-X)}}: (Y-X) \to (Y-X)$ is expansive with expansive constant δ .
 - (ii) There exists a basis \mathscr{B} of X with respect to h such that $d(x,(Y-X)) > \delta$, for every $x \in \mathscr{B}$.
- (6) (a) Let (X, d) be a compact metric space and $f: X \to X$ be a homeomorphism. If f^{-1} has POTP then prove that f^{-1} has canonical coordinates and f^k has POTP for any $k \ge 1$. (8)
 - (b) If (X,d) is a compact metric space and $f: X \to X$ is a homeomorphism satisfying that for every $\epsilon > 0$, there exists a $\delta > 0$ such that every finite δ -pseudo orbit $(z_i)_{0 \le i \le k}, k \in \mathbb{N}$ is ϵ -traced by some point of X then prove that f has POTP. (6)
- (7) (a) Prove that $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{1}{\sqrt{2}}x$ is a topologically Anosov homeomorphism. (5)
 - (b) Let (X, d) be a compact metric space and $f: X \to X$ be an expansive homeomorphism having POTP. Prove that f is topologically stable in the class of self-homeomorphisms of X. (9)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI M.A./M.Sc. Mathematics Examinations, May 2023

Part II Semester IV

MMATH18-404(i): ADVANCED FLUID DYNAMICS

Time:	3 Но		
	ot ar	ns: • Attempt FIVE questions in all. • Q.No.1 is compulsory. • ny FOUR questions from Q.No.2 to Q.No.7. Each question carries 14 ll the symbols have their usual meaning.	
(1)	(a)	Show that under MHD approximation the displacement current density is negligible in the Ampere's circuital law.	[3 Marks]
	(b)	Write the Prandtl's boundary layer equations and boundary conditions in term of stream function $\psi(x,y)$.	[3 Marks]
	(c)	Define equation of state of a compressible substance. Write the van der Waal's equation of state for a non-ideal gas and simplify it.	[3 Marks]
	(d)	Check whether the heat added Q and entropy S per unit mass of an ideal gas are function of state or not? Give justification for your answer.	[2 Marks]
	(e)	Define shock Mach number, shock strength, weak and strong shock.	[3 Marks]
(2)	(a)	Reduce the Navier Stokes equation of motion into non-dimensional form. Explain physically the obtained non-dimensional numbers.	[7 Marks]
	(b)	State the principle of conservation of energy for a fluid flow. Derive the internal energy equation $\rho \frac{De}{Dt} = \frac{p}{\rho} \frac{D\rho}{Dt} - \nabla \cdot \overrightarrow{q} + \stackrel{\longleftarrow}{\tau} : (\nabla \overrightarrow{w})^t$.	[7 Marks]
(3)	(a)	Show that $c_p - c_v = -T(\frac{\partial v}{\partial T})_p^2(\frac{\partial p}{\partial v})_T$. Also find the corresponding relation for the non-ideal gas with equation of state $p(v-b) = RT$.	[4 Marks]
	(b)	Investigate the maximum mass flow through a nozzle and find the condition for maximum isentropic mass flow at the exit plane.	[5 Marks]
	(c)	Define normal and oblique shock wave. Prove that the shock wave is compressive in nature.	[5 Marks]
(4)	(a)	Write the mass, momentum and energy equation for one dimensional motion of an inviscid gas in the integral form and derive the corresponding shock conditions.	[3+6 Marks]
	(b)	Derive the magnetic field intensity equation for a conducting fluid in motion. Explain physically each term of the equation.	[5 Marks]
(5)	(a)	Derive the equation of motion of a non-viscous conducting fluid $\frac{\partial(\rho\overrightarrow{v})}{\partial t} + \rho(\overrightarrow{v}.\nabla)\overrightarrow{v} = \overrightarrow{f(ex)} + \frac{\mu}{4\pi}(\overrightarrow{H}.\nabla)\overrightarrow{H} - \nabla(p + \frac{\mu\overrightarrow{H}^2}{8\pi}) - \overrightarrow{v}\nabla.(\rho\overrightarrow{v}).$ Write the corresponding equation for viscous and incompressible fluid.	[7 Marks]
	(b)	Show that the Lorentz's force per unit volume of a conducting fluid is equivalent to the hydro-static pressure $\frac{\mu H^2}{8\pi}$ and a tension $\frac{\mu H^2}{4\pi}$ per unit area along the line of force.	[7 Marks]

- (6) (a) Explain the Alfven's wave. Show that the MHD wave propagate with the speed $\sqrt{a^2 + V_A^2}$, where V_A is Alfven's velocity.
 - (b) Define the displacement, momentum and energy thickness of a [6+3 Marks] boundary layer and find the expression for each of them on a flat plate. Compute and compare the three thicknesses over a flat plate for linear velocity distribution given by

$$u(y) = \begin{cases} \frac{U_{\infty}}{\delta}, & 0 < y < \delta \\ U_{\infty}, & \delta < y < \infty, \end{cases}$$

where, U_{∞} is uniform stream velocity.

- (7) (a) Derive the Prandtl's boundary layer equations along with the boundary conditions for two dimensional viscous incompressible fluid flow over a slender body. Also write the corresponding equations for the steady flow.
 - (b) Derive the energy integral equation for steady, two dimensional [6 Marks] boundary layer flow of incompressible fluid.

Your Rol	l Num	ber: .										
----------	-------	--------	--	--	--	--	--	--	--	--	--	--

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI M.A./M.Sc. Mathematics Examinations, May 2023 Part II Semester IV, UPC 223502413

MMATH18-404(ii): COMPUTATIONAL METHODS FOR PDES

Maximum Marks: 70 Time: 3 hours

Instructions: • Attempt five questions in all • Question number one is compulsory and attempt any four from the remaining • Each question carries 14 marks • Scientific non-programming calculator for doing numerical calculations is allowed for this examination • Notations and acronyms have their usual meaning.

- (1) (a) State True or False and justify: Consistency of a finite difference scheme 1+3 Marks does not imply convergence.
 - (b) Write the Lax-Wendroff multistep scheme for the equation $u_t + au_x = 0$. [3+1 Marks] What is its order of accuracy?
 - (c) State True or False and justify: A non-constant harmonic function in 1+3 Marks D cannot take it's maximum value in D but only on boundary ∂D .
 - (d) Write the convection-diffusion equation and give it's physical interpre-1+1 Marks tation.
- (2) (a) Find the solution of the initial value problem [7 Marks] $u_t + au_x = f(t, x)$, where a is positive

[7 Marks]

with
$$u(0,x) = 0$$
 and $f(t,x) = \begin{cases} 1 & \text{if } -1 \le x \le 1 \\ 0 & \text{otherwise.} \end{cases}$

- (b) Consider system $\begin{pmatrix} u^1 \\ u^2 \end{pmatrix}_t + \begin{pmatrix} a & b \\ b & a \end{pmatrix} \begin{pmatrix} u^1 \\ u^2 \end{pmatrix}_x = 0$ on the interval [0, 1], with a equal to 0 and b equal to 1 and with the boundary conditions u^1 equal to 0 at the left and u^1 equal to 1+t at the right boundary. Find the solution for $0 \le x + t \le 3$ if the initial data are given by $u^1(0,x) = x$ and $u^2(0,x) = 1$.
- (3) (a) Find the truncation error and stability by Von-Neumann analysis of [3+4 Marks] the Leapfrog scheme for the equation $u_{tt} - a^2 u_{xx} = 0$, where a is nonnegative real number.
 - (b) Find the solution of the initial boundary value problem [7 Marks] $u_{tt} = u_{xx}, \ 0 \le x \le 1$

subject to the initial conditions

$$u(x,0) = \sin(\pi x), \ 0 \le x \le 1$$

 $u_t(x,0) = 0, \ 0 \le x \le 1$

and the boundary conditions u(0,t) = u(1,t) = 0, t > 0by using the scheme $\frac{1}{k^2}\delta_t^2 v_m^n = \frac{1}{h^2}\delta_x^2 v_m^n$ with $h = \frac{1}{4}$ and $\lambda = \frac{3}{4}$. Compute the solution for four time steps.

- (4) (a) Discuss the Von-Neumann stability analysis of the BTCS and Crank-Nicolson schemes for the equation $u_t = bu_{xx} + f(t,x)$, where b > 0.
- [3+4 Marks]

[2+5 Marks]

[2+5 Marks]

[3+4 Marks]

[7 Marks]

(b) Find the solution of the two dimensional heat conduction equation $u_t = u_{xx} + u_{yy}$ valid in $0 \le x, y \le 1, t \ge 0$. The initial and boundary conditions are given as

$$u(x, y, 0) = \sin 2\pi x \sin 2\pi y$$
. $0 \le x, y \le 1$
 $u(x, y, t) = 0$, $t > 0$, on the boundary

Solve the above equation using the Peaceman-Rachford ADI scheme with $h = \frac{1}{3}$, $\lambda = 1$. Integrate for one time step.

(5) (a) Draw a finite difference grid in the $r - \theta$ plane and use it to discretize the following equations:

$$\frac{\frac{1}{r}\frac{\partial}{\partial r}(r\frac{\partial u}{\partial r}) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} = f(r,\theta)}{\frac{\partial^2 u}{\partial r^2} + \frac{1}{r}\frac{\partial u}{\partial r} + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} = f(r,\theta)}$$
where $0 \le r \le 1$ and $0 \le \theta \le 2\pi$.

- (b) Find the order of accuracy and truncation error of a finite difference scheme with equal step length h for the equation $\nabla^2 u = 0$, where u = u(x, y, z).
- (6) (a) Explain linear iterative methods in solving finite difference schemes for Laplace equation in a rectangle and analyse them to determine their relative rates of convergence.
 - (b) Solve the boundary value problem

[7 Marks]

$$\nabla^2 u = x^2 - 1$$
, $|x| \le 1$, $|y| \le 1$
 $u = 0$ on the boundary of the square

using the five point difference scheme by taking the mesh size $h = \frac{1}{2}$.

- (7) (a) Derive the Galerkin finite element method for the equation $A(x,y)u_{xx} + 2B(x,y)u_{xy} + C(x,y)u_{yy} + D(x,y)u_x + E(x,y)u_y + F(x,y)u + G(x,y) = 0, (x,y) \in R$ subject to the Dirichlet condition $u(x,y) = 0, (x,y) \in S$ and hence deduce it for the poisson equation $\nabla^2 u = g(x,y)$.
 - (b) Find the Galerkin finite element solution of the boundary value problem

[7 Marks]

4+3 Marks

$$abla^2 u = -1, \quad |x| \le 1, \quad |y| \le 1$$

 $u = 0, \quad |x| = 1, \quad |y| = 1$

with $h = \frac{1}{2}$ and a triangular mesh.

* * *

Department of Mathematics, University of Delhi M.A./M.Sc. Mathematics Examinations, May 2023

Part II Semester IV

MMATH18-404(iii): Dynamical Systems UPC: 223502414

Time: 3 hours

Maximum Marks: 70

Instructions: • Question number 1 is compulsory and attempt any Four questions from the remaining. • Each question carries 14 marks.

(1) (a) Solve the initial value problem $\dot{x} = Ax$ with

[2 Marks]

$$A = \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix}.$$

(b) Determine the nature of the critical point at the origin for the following system

[2 Marks]

$$\dot{x} = y, \quad \dot{y} = -x^3 + 4xy.$$

(c) Solve the linear system $\dot{x} = Ax$, where

[2 Marks]

$$A = \begin{pmatrix} a & 0 \\ 0 & -1 \end{pmatrix}.$$

(d) Define ω -limit set and α -limit set of a trajectory of the system.

[2 Marks]

(e) Classify the equilibrium points (as sinks, sources or saddles) of the nonlinear system $\dot{x} = f(x)$ with

[2 Marks]

$$f(x) = \begin{bmatrix} x_1 - x_1 x_2 \\ x_2 - x_1^2 \end{bmatrix}.$$

(f) Sketch the phase portraits corresponding to

[2 Marks]

$$\dot{x} = x - \cos(x).$$

and determine the stability of all the fixed points.

(g) For the Hamiltonian function H(x,y) = ysin(x), determine both Hamiltonian system and gradient system.

[2 Marks]

(2) (a) Write the following system in polar coordinates and determine the nature of origin

[4 Marks]

[10 Marks]

$$\dot{x} = -y + x(1 - x^2 - y^2), \quad \dot{y} = x + y(1 - x^2 - y^2).$$

(b) State "The Local Center Manifold Theorem". Determine the center manifold near the origin of the system

$$\dot{x_1} = x_1 y - x_1 x_2^2,$$

$$\dot{x_2} = x_2 y - x_2 x_1^2,$$

$$\dot{y} = -y + x_1^2 + x_2^2$$

(3) (a) Define the term supercritical Hopf bifurcation.

[2 Marks]

(b) What do you mean by Supercritical Pitchfork bifurcation for one-dimensional flow. Write its normal form. Also, discuss the stability analysis and whole mechanism by making graphs.

[8 Marks]

(c) Make bifurcation diagram for supercritical pitchfork bifurcation.

[4 Marks]

MMATH18-404(iii): Dynamical Systems

UPC: 223502414

- 2-

(4) (a) Find the stable, unstable and center subspaces E^s , E^u and E^c of the system $\dot{x} = Ax$ [4 Marks] with the matrix

 $A = \begin{bmatrix} -1 & -3 \\ 0 & 2 \end{bmatrix}.$

(b) State and prove "The Stable manifold Theorem".

[10 Marks]

(5) (a) Consider the system

[4 Marks]

$$\dot{x} = -y + x^3 + xy^2$$
 $\dot{y} = x + y^3 + x^2y$.

y = x + y + x + y.

Show that origin is an unstable focus for this nonlinear system.

(b) Solve the two-dimensional system $\dot{y} = -y, \quad \dot{z} = z + y^2$

[10 Marks]

and show that the successive approximations $\Phi_k \longrightarrow \Phi$ and $\Psi_k \longrightarrow \Psi$ as $k \longrightarrow \infty$ for all $(y_1, y_2, z) \in \mathbb{R}^3$. Define $H_0 = (\Phi, \Psi)^T$ and use this homeomorphism to find

$$H = \int_0^1 L^{-s} H_0 T^s ds.$$

(6) (a) Find all the fixed points of the system

[6 Marks]

$$\dot{x} = -x + x^3, \ \dot{y} = -2y.$$

Use linearization to classify them. Then, check your conclusions by deriving the phase portrait for the full non-linear system.

(b) Consider the following two-dimensional system

[8 Marks]

$$\dot{x} = -y + ax(x^2 + y^2), \ \dot{y} = x + ay(x^2 + y^2).$$

where a is parameter. Show that small non-linear term can change a center into a spiral.

(7) (a) Find the Poincaré map of the system

[7 Marks]

$$\dot{x} = -y + x(1 - x^2 - y^2), \quad \dot{y} = x + y(1 - x^2 - y^2).$$

(b) Solve the initial value problem $\dot{x} = Ax$, where

[7 Marks]

$$A = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 2 & 0 & 1 & 0 \end{bmatrix}.$$

Your Roll N	Number:															,
-------------	---------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI M.A./M.Sc. Mathematics Examinations, May 30, 2023 Part II Semester IV

MMATH18-405(i): CRYPTOGRAPHY (Unique Paper Code: 223503401)						
Γime: 2 Hours	Maximum Marks: 35					
Instructions: • Attempt five questions in all. • All questions carry equal marks.	• Question 1 is compulsory.					
(1) Explain the following:						
(a) Stream ciphers.	[2]					
(b) Affine linear block ciphers.	[2]					
(c) Vernam one-time pad.	[1]					
(d) Discrete logarithms.	[1]					
(e) Public key encryption	[1]					
 (2) Let n ≥ 3 be an odd composite number. 1} contains at most (n − 1)/4 numbers witness for the compositeness of n. 						
(3) Describe RSA encryption as a block cip $d \pmod{n}$ where (n, e) is the public RSA ing private key.	ther. Also, show that $m^{ed} \equiv$ A key and d is the correspond- [7]					
(4) Discuss the following:(a) ElGamal Encryption scheme.(b) Rabin Encryption scheme.	[3.5] [3.5]					
(5) Explain the following ciphers with exar	nples:					
ECB & CBC	[3.5 + 3.5]					

- (6) Explain the working of S-boxes and round key generations K_1, K_2, \ldots, K_{16} in DES algorithm. [7]
- (7) Describe the encryption and decryption in Feistel cipher in detail. [7]

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI M.A./M.Sc. Mathematics Final Examination, 2023

Part II Semester IV

MMATH18 405(ii): SUPPORT VECTOR MACHINES

Unique Paper Code: 223503402

Time: 2 hours Maximum Marks: 35

Instructions: • Attempt five questions in all. • Question 1 is compulsory.

- Answer any four questions from Q. 2 to Q. 7. All questions carry equal marks.
- All notations have standard meaning.
 - (1) (a) Define hard $\bar{\varepsilon}$ -band hyperplane for a linear regression problem.
- [2 Marks]

(b) Define graph kernel based on the path.

- [2 Marks]
- (c) Write the dual of the primal problem (P) considered in Q. 3.
- [3 Marks]

(2) Consider the convex programming problem (CP)

[7 Marks]

Minimize
$$f_0(x)$$

subject to
$$f_i(x) \le 0, i = 1, 2, ..., m$$
,

$$h_i(x) = a_i^T x_i - b_i = 0, i = 1, 2, ..., p,$$

where $f_0, f_i, i = 1, ..., m$ are continuous convex functions on \mathbb{R}^n and $a_i \in \mathbb{R}^n, b_i \in \mathbb{R}, i = 1, ..., p$. Derive its dual problem. Is the dual a convex programming problem? State weak duality for (CP).

(3) Consider the linearly separable problem (P)

[7 Marks]

Minimize
$$\frac{1}{2}||w||^2$$

subject to
$$y_i((w.x_i) + b) \ge 1, i = 1, 2, ..., l$$
,

corresponding to the training set $T = \{(x_1, y_1), (x_2, y_2), ..., (x_l, y_l)\}$. Prove that (P) has a solution (w^*, b^*) such that $w^* \neq 0$. Also, prove that there exists a $j \in \{i|y_i = 1\}$ and a $k \in \{i|y_i = -1\}$ such that $(w^*.x_j) + b^* = 1$ and $(w^*.x_k) + b^* = -1$, respectively.

- (4) (a) Give an algorithm for linearly separable support vector classification.
- [5 Marks]
- (b) What do you mean by a support vector in linearly separable support vector classification?
- [2 Marks]
- (5) (a) Explain how one can construct a hard $\bar{\varepsilon}$ -band hyperplane using the classification method through an example.
- [4 Marks]

(b) Consider the problem (P_w)

[3 Marks]

Minimize
$$\frac{1}{2}||w||^2$$

subject to
$$(w.x_i) + b - y_i \le \varepsilon, i = 1, 2, ..., l,$$

$$y_i - (w.x_i) - b \le \varepsilon, i = 1, 2, ..., l,$$

corresponding to the training set $T = \{(x_1, y_1), (x_2, y_2), ..., (x_l, y_l)\}$. Suppose that ε_{inf} is the optimal value of the following problem

Minimize ε

subject to
$$-\varepsilon \leq y_i - (w.x_i) - b \leq \varepsilon, i = 1, 2, ..., l.$$

Prove that if $\varepsilon > \varepsilon_{inf}$ then the problem (P_w) has a solution and the solution with respect to w is unique.

- (6) (a) If $K_1(x, x')$ and $K_2(x, x')$ are kernels on $\mathbb{R}^n \times \mathbb{R}^n$ then prove that the product $K(x, x') = K_1(x, x').K_2(x, x')$ is also a kernel.
- [3 Marks]
- (b) Prove that Gaussian radial basis function with parameter σ given by $K(x, x') = exp(-\|x x'\|^2/\sigma^2)$ is a kernel.

[4 Marks]

(7) (a) Suppose $\alpha^* = (\alpha_1^*, ..., \alpha_l^*)^T$ is a solution to the problem Minimize $\frac{1}{2} \sum_{i=1}^l \sum_{j=1}^l y_i y_j K(x_i, x_j) \alpha_i \alpha_j - \sum_{j=1}^l \alpha_j$ subject to $\sum_{i=1}^l y_i \alpha_i = 0$, $0 \le \alpha_i \le C, i = 1, 2, ..., l$,

[7 Marks]

corresponding to the training set $T = \{(x_1, y_1), (x_2, y_2), ..., (x_l, y_l)\}$. If $g(x) = \sum_{i=1}^l y_i \alpha_i^* K(x_i, x) + b^*$, then prove that

- (i) support vector x_i corresponding to $\alpha_i^* \in (0, C)$ satisfies $y_i g(x_i) = 1$,
- (ii) support vector x_i corresponding to $\alpha_i^* = C$ satisfies $y_i g(x_i) \leq 1$,

(iii) nonsupport vector x_i satisfies $y_i g(x_i) \geq 1$.

Also give a geometrical interpretation of conditions in (i)-(iii).