Your Roll Number:

Time: 3 hours

Department of Mathematics, University of Delhi M.A./M.Sc. Mathematics Examinations August 2022 Part I Semester II MMATH18-201: Module Theory, UPC- 223501201

Maximum Marks: 70

Instr from	the re	ns: • Question 1 is compulsory.• Attempt any four Questions st.• All questions carry equal marks.	
(1	.) (a)	Define isomorphic categories with example.	[2 Marks]
	(b)	Does every torsion-free divisible abelian group a direct sum of copies of rationals \mathbb{Q} ? Justify.	[3 Marks]
	(c)	Define length of module and determine the length of the \mathbb{Z} -module \mathbb{Z}_{10} .	[3 Marks]
	(d)	Are \mathbb{Z}_2 and \mathbb{Z}_3 projective and free \mathbb{Z}_{6^-} modules respectively? Justify.	[3 Marks]
	(e)	Is $2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}_2$ a submodule of $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}_2$? Justify your answer.	[3 Marks]
(2	?) (a)	Prove that a short exact sequence $0 \longrightarrow M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \longrightarrow 0$ splits if and only if α has a right inverse.	[6 Marks]
	(b)	State and prove universal property of direct product for left R -modules.	[2+6 Marks]
(3	s) (a)	Define a category and give two examples.	[2 Marks]
	(b)	Describe what is Five-Lemma. Provide a detailed proof of the Lemma.	[2+6 Marks]
	(c)	Show that a zero morphism in the category R^{Mod} corresponds to a zero morphism in category S^{Mod} and zero module in R^{Mod} is mapped to the zero module of the category S^{Mod} under an additive functor F from R^{Mod} to S^{Mod} .	[2+2 Marks]
(4	a) (a)	Show that a left R -module is projective if and only if it is isomorphic to a direct summand of a free left R -module.	[6 Marks]
	(b)	Show that every injective left module over an integral domain is divisible. Does the converse hold? Justify. Also give an example of a projective module which is not injective	+3+2 Marks]

(5) (a) If M, N and P are three R-modules, then prove the following [7 Marks] $(M \otimes N) \otimes P \cong M \otimes (N \otimes P).$

(b) Prove that every module is a quotient of free module. Give an [4+3 Marks] example of a module which is not free.

MMATH18-201:	Module	Theory,	UPC-	223501201	

- (6) (a) Prove that every submodule of a semisimple module M is complemented in M. [8 Marks]
 - (b) Define a fully invariant submodule of an *R*-module *M*. Show [6 Marks] that the fully invariant submodules are nothing but the two sided ideals when *R* is considered as a right *R*-module.

202501001

- 2-

- (7) (a) Prove that a finitely generated module over a principal ideal [5+2 Marks]domain R is free if and only if it is torsion-free. Hence show that R^n is not bounded.
 - (b) Let M be a torsion module over a principal ideal domain R. [7 Marks] Prove that $M = \bigoplus_{p} M_{p}$, where M_{p} is p-primary submodule of Mand p is a prime in R.
- (8) (a) Let N be a proper submodule of a module M of finite length. [7 Marks] Prove that length of N is strictly less than length of M.
 - (b) Let $0 \longrightarrow M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \longrightarrow 0$ be a short exact sequence of [7 Marks] *R*-modules and *R*-homomorphisms. Prove that *M* is Noetherian iff both *M'* and *M''* are Noetherian modules.

Your Roll Number:

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI M. A./M. Sc. Mathematics Examinations, August-2022 MMATH18-202 : INTRODUCTION TO TOPOLOGY (UPC 223501202)

Time: 3 hours			Maximum Marks: 70
Instructions:	• Attempt five	questions in all.	 Question 1 is compulsory All questions carry equal
and answer any	four questions	from Q 2 to Q 8	

,

Q 1. Prove or disprove the following:

marks.

	(a)	The set $\{\frac{1}{n} \mid n \in \mathbb{N}\}$ of the real line \mathbb{R} is discrete.	[2 Marks]
	(b)	Local connectedness is preserved by a continuous map.	[3 Marks]
	(c)	Let X be a topological space and $A \subseteq X$. If $x \in \overline{A}$, then there is a net in A that converges to x.	[3 Marks]
	(d)	A closed subset of a separable space is separable.	[3 Marks]
	(e)	The Bolzano–Weierstrass property is preserved by a continuous map.	[3 Marks]
Q 2.	(a)	Let $A = \{\frac{1}{n} \mid n \in \mathbb{N}\}$. Show that the collection of open intervals (a, b) and the sets $(a, b) - A$ is a basis for a topology on \mathbb{R} . Compare this topology with the usual topology on \mathbb{R} .	[8 Marks]
	(b)	Let X and Y be topological spaces. Prove that a function $f: X \to Y$ is continuous if and only if it is continuous at each point of X.	[6 Marks]
Q 3.	(a)	Let X_n , $n = 1, 2, \cdots$ be a family of metrisable spaces. Show that the product space $\prod X_n$ is metrisable.	[8 Marks]
-	(b)	Let X_{α} , $\alpha \in A$, be a family of topological spaces. Prove that $\prod X_{\alpha}$ is connected if and only if each X_{α} is connected.	[6 Marks]
Q 4.	(a)	Define the closed topologist's sine curve. Prove that it is con- nected but not path-connected.	[8 Marks]
	(b)	Let X, Y and Z be topological spaces. Show that a function $f: Z \to X \xrightarrow{\times} Y$ is continuous if and only if the coordinate maps $p_X \circ f: Z \to X$ and $p_Y \circ f: Z \to Y$ are continuous.	[6 Marks]
Q 5.	(a)	Show that a topological space X is Hausdorff if and only if the set $\Delta = \{(x, x) \mid x \in X\}$ is closed in $X \times X$.	[8 Marks]
	(b)) Let $\varphi : A \to X$ be a net in a topological space X. Prove that	[6 Marks]

MMATH18-202 :Introduction to Topology	
(UPC 223501202)	

- 2-

 $x \in X$ is a cluster point of ϕ if and only if there is a subnet of ϕ that converges to x.

- Q 6. (a) Let $\mathscr{T} = \{\emptyset\} \cup \{\mathbb{R} F \mid F \text{ is closed and bounded in } \mathbb{R}\}$. Show [8 Marks] that $(\mathbb{R}, \mathscr{T})$ is T_1 but not T_2 .
 - (b) Show that the Sorgenfrey line \mathbb{R}_{ℓ} is first countable but not second [6 Marks] countable.

-1-07

- Q 7. (a) Let X be a compact Hausdorff space, and $f : X \to Y$ be a [8 Marks] continuous surjection. Show that Y is Hausdorff if and only if f is closed.
 - (b) Let A be a compact subset of a Hausdorff space X and $x \in X-A$. [6 Marks] Show that there are disjoint open sets U and V such that $x \in U$ and $A \subset V$.
- Q 8. (a) Prove that a T_1 space is countably compact if and only if it has [8 Marks] the Bolzano-Weierstrass property.
 - (b) State and prove the Tychonoff theorem. [6 Marks]

Your Roll Number:

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI M.A./M.Sc. Mathematics End Semester Examinations, August, 2022 Part I Semester II MMATH18-203: FUNCTIONAL ANALYSIS

Time: 3 hours

(UPC: 223501203)

Maximum Marks: 70

[3]

[3]

[2]

[6]

[6]

[2]

[7]

[6]

[5]

Instructions: • Section A is compulsory. • Answer any four questions from section B • All notations have usual meaning.

Section A

- (1) (a) Fix $a = \{\alpha_j\} \in l^2$, define $f(x) = \sum_{n=1}^{\infty} \alpha_n \xi_n$, $x = \{\xi_m\} \in l^2$. Find the norm of the functional f. [3]
 - (b) Show that if $\{e_k\}_{k=1}^{\infty}$ is an orthonormal sequence in an inner product space X, then

$$\sum_{k=1}^{\infty} | < x, e_k > < y, e_k > | \le ||x|| ||y||, \forall x, y \in X.$$

- (c) Give an example to show that in a normed space X, the weak convergence of a [3] sequence need not imply strong convergence.
- (d) Show that $\lambda = 0$ is a spectral value of the right shift operator $T : l^2 \to l^2$ defined by $T(\xi_1, \xi_2, \ldots) = (0, \xi_1, \xi_2, \ldots)$.
- (e) Is every isometric operator on a Hilbert space unitary?Justify. Section B
- (2) (a) Show that in a normed space X absolute convergence of a series implies its convergence if and only if the space X is complete.
 - (b) Give an example of a set in l^2 which is not total. Prove that an orthonormal set in a Hilbert space H is total in H if an only if the Parseval relation holds.
 - (c) Show that in an inner product space, $x \perp y$ if we have $||x + \alpha y|| = ||x \alpha y||$ for all scalars α .

(3) (a) If X and Y are Banach spaces and $T \in B(X, Y)$ is surjective, then show that the [7] image $T(B_0)$ of an open unit ball $B_0 = B(0, 1) \subset X$ contains an open ball about 0 of Y.

- (b) Let H_1 and H_2 be Hilbert spaces and $T \in B(H_1, H_2)$. Define the Hilbert adjoint T^* of T, show that it exists, and is a bounded linear operator with norm $||T|| = ||T^*||$.
- (4) (a) Let X and Y be Banach spaces and $T: D(T) \to Y$ be a closed linear operator, where $D(T) \subset X$. Prove that if D(T) is closed in X, the operator T is bounded.
 - (b) Show that the dual space of l^1 is isomorphic to l^{∞} .
 - (c) Define $T: l^{\infty} \to l^{\infty}$ by $T(\{\xi_j\}_{j=1}^{\infty}) = \{\frac{\xi_j}{j}\}_{j=1}^{\infty}$. Prove that the null space of T is [3] closed.
- (5) (a) Show that any two norms on a finite dimensional vector space X are equivalent. [7]

MMATH18-203: Functional Analysis

What happens if X is infinite dimensional? Justify your answer.

- (b) Let X be a normed space, Y a Banach space and $T : \mathfrak{D}(T) \subset X \to Y$ be a bounded linear operator. Then show that T has an extension $\tilde{T} : \overline{\mathfrak{D}(T)} \to Y$ which is bounded, linear and has norm $||T|| = ||\tilde{T}||$.
- (6) (a) Let f be a bounded linear functional on a subspace Z of a normed space X. Then prove that there exists a bounded linear functional \tilde{f} on X which is an extension of f to X and has the same norm $||\tilde{f}||_X = ||f||_Z$ where $||\tilde{f}||_X = \sup_{\substack{x \in X \\ ||x||=1}} |\tilde{f}(x)|, \quad ||\tilde{f}||_Z = \sup_{\substack{x \in Z \\ ||x||=1}} |f(x)|.$
 - (b) Let $\{T_n\}$ be a sequence of operators such that $T_n \in B(X, Y)$ where X and Y are Banach spaces. Then show that the sequence (T_n) is strongly operator convergent if and only if

a. the sequence $\{||T_n||\}$ is bounded,

- b. the sequence $\{T_n x\}$ is Cauchy in Y for every x in a total subset M of X.
- (c) State true or false and justify: For a bounded linear operator $T: X \to Y$ where X and Y are normed spaces the range space is closed.
- (7) (a) State and prove uniform boundedness theorem. Give an example to show that the hypothesis of completeness of the underlying space cannot be dropped from the uniform boundedness theorem.
 - (b) Prove that $\sigma(T)$, the spectrum of a bounded linear operator T on a complex Banach space X is compact and lies in the disc $\{\lambda \in \mathbb{C} : |\lambda| \leq ||T||\}$.
- (8) (a) Let Y be a proper closed subspace of a normed space X. Let $x_0 \in X Y$ be arbitrary and $\delta = d(x_0, y)$. Then show that there exists a $\tilde{f} \in X'$ such that $||\tilde{f}|| = 1$, $\tilde{f}(y) = 0 \forall y \in Y$, $\tilde{f}(x_0) = \delta$.
 - (b) Show that a reflexive normed space is complete.
 - (c) Prove that the spectrum $\sigma(T)$ of a bounded linear operator $T \in B(X, X)$ where $X \neq 0$ is a complex Banach space is non-empty.

- 2-

[6]

[5]

[3]

7

[7]

[6]

[3]

5

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI M.A./M.Sc. Mathematics Examinations, August 2022 Part I Semester II

MMATH18-204: FLUID DYNAMICS, UPC 223501204

Γime: 3 hour	Maximum Marks	: 70
Instructions:	• Q.No.1 in section A is compulsory. • Attempt any FO	UR
questions from	section \mathbf{B} . • All the symbols have their usual meaning.	

Section A

(Answer all parts, 14 Marks)

- (1) (a) Explain the continuum hypothesis. Write the two criteria for validity [3 Marks] of the continuum hypothesis.
 (b) Write Euler's equation of motion in component form in (r, θ, z) [2 Marks]
 - (b) Write Euler's equation of motion in component form in (1,5,2) (2 Marks coordinate.
 - (c) Deduce the velocity component (q_r, q_θ) at a point (r, θ) due to axisymmetric flow of incompressible fluid with the axis of symmetry OZ, where O is origin. [3 Marks]
 - (d) Explain the Magnus effect in a two dimensional fluid motion. [3 Marks]
 - (e) Compute the rate of volumetric strain in a viscous fluid motion. [3 Marks] Find its value for an incompressible fluid.

Section B

(Answer any FOUR questions, 56 Marks)

- (2) (a) Define a material volume, control volume, streak lines, and vorticity [4+3 Marks] vector. Derive relation between the local and particle rate of change in a fluid motion.
 - (b) State the principle of conservation of mass. Derive the equation of [2+5 Marks] continuity for a fluid motion in integral and differential form. Write the equation of continuity for a two dimensional motion in (r, θ) coordinate.
- (3) (a) Define a boundary surface in a fluid motion. Prove that the surface [1+5 Marks] $\frac{x^2}{k^2t^4} + kt^2(y^2 + z^2) = a^2$, where a and k are constant, is a possible form of boundary surface of a liquid motion at time t.
 - (b) Find the value of a, b and c for which the motion given by the velocity [2 Marks] $(x + 2y + az)\hat{i} + (bx - 3y - z)\hat{j} + (4x + cy + 2z)\hat{k}$ is irrotational.
 - (c) Derive the Bernoulli's equation of motion in its most general form. [5+1 Marks] Also, deduce its particular forms.
- (4) (a) An inviscid incompressible fluid moves steadily with velocity $\vec{q} = [3 \text{ Marks}]$ (kx, -ky, 0), where k is constant, under no external body force. Compute the pressure p(x, y, z) in the fluid motion when $p(0, 0, 0) = p_0$. [6 Marks]
 - (b) Consider a uniform stream of steady, irrotational flow of incompressible fluid past a stationary sphere of radius a at origin. Describe the problem with a neat diagram and find the velocity potential, fluid velocity, stagnation points and pressure at any point of the sphere.

•

- 2-

		Also, find the condition when fluid break away the contact of the	
		sphere along the equatorial line.	[1 + 4 Montrol
	(c)	State and prove the Kelvin's circulation theorem.	[1+4 Marks]
(5)	(a)	Define a three dimensional doublet. Find the velocity at point due to a simple source of strength m and show that the motion is irrotational and hence find the velocity potential.	[2+3 Marks]
	(b)	Find the image of a simple source of strength m in a rigid infinite plane.	[2 Marks]
	(c)	Define axi-symmetric flow and the Stokes stream function. Find the Stokes stream function due to a uniform line source of strength m per unit length along line OA on OZ axis, where O is origin. Determine the stream surface due to the uniform line source.	[2+5 Marks]
(6)	(a)	Define a two dimensional motion and complex velocity potential. Compare the dimensions of a stream function and kinematic coefficient of viscosity.	[3 Marks]
	(b)	Deduce the physical interpretation of stream function for a two di- mensional flow.	[4 Marks]
	(c)	State the theorem of Blasius. Discuss the action of fluid pressure on a unit length of a long infinite circular cylinder of radius a placed in a uniform stream $-U\hat{i}$ with a circulation of $2\pi k$ about the cylinder	[2+5 Marks]
(7)	(a)	Compare the Weiss's sphere theorem, Milne Thomson's circle the orem and Butler sphere theorem in term of their assumptions, con clusion and applications.	- [7 Marks] -
	(b)	Discuss the fluid motion due to a complex potential $w = \hat{i}k \log x$ Find the equation of stream lines due to a source of strength \hat{k} at $(-1,0)$ and $(1,0)$ and a sink of strength $2m$ at origin in two dimensional motion.	z. [4+3 Marks] n 70
(8)	(a)	Define stress components in a real fluid. Write relation between stress components and rate of strain in tensor form.	en [2+1 Marks]
	(b)	Derive Navier-Stokes equation of motion for a viscous compressib fluid.	ole [4 Marks]
	(c)	Explain the Newton's law of viscosity. Discuss with necessary a sumption about the solution of Navier Stokes equation of motion a viscous fluid flow between the two parallel planes. Compute the velocity profile between the two planes and drag per unit area on the lower and upper plane.	as- [2+5 Marks] of the the

 \mathbf{H}