Your Roll Number:

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI M.A./M.Sc. Mathematics Examinations, May 2019 Part I Semester II MATH14-201: MODULE THEORY

Time: 3 hours

Maximum Marks: 70

Instructions: • Write your roll number on the space provided at the top of this page immediately on receipt of this question paper. • This question paper has three sections. • Section A is compulsory. • Attempt any **two** questions from **Section B** and **Section C** each. • Throughout the paper R represents a ring with nonzero unity.

SECTION A (Attempt all) (14 marks)

		[n]
(1)	(i) Give example of a subcategory which is not full.	$\begin{bmatrix} 2 \end{bmatrix}$ $\begin{bmatrix} 2 \end{bmatrix}$
	(ii) Determine the submodule generated by $2\mathbb{Z} \cup 5\mathbb{Z}$ in \mathbb{Z} ? (iii) Determine the bound of the left <i>R</i> -module R/I , where $I = Ra$, [2]
	$0 \neq a \in R$.	[2]
	(iv) Is submodule of a free module free? Justify your answer. (v) Define length of a module. What is the length of \mathbb{Z} -module \mathbb{Z}_{10} ?	[3]
	(vi) Is $2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}_2$ a submodule of $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}_2$? Justify your answer.	[3]
	SECTION B (Attempt any two) (28 marks)	
(2)) (a) Let R be a commutative ring; M and N be left R-modules, $k \in \mathbb{N}$ Prove that	I. [6]
	$Hom_R(M, N^k) \cong (Hom_R(M, N))^k.$	
	(b) For a short exact sequence $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$, prove that M is Artinian if and only if M' and M'' are both Artinian.	re [6]
	(c) Define a category.	[2]
(3)	(a) Define an exact contravariant functor. Give example (with justific tion) of a module M for which the contravariant functor $Hom_R(-, N)$ is exact.	
	(b) Prove that a short exact sequence $0 \to M' \xrightarrow{\lambda} M \xrightarrow{\mu} M'' \to 0$ split if and only if μ has a left inverse.	its [5]
	(c) Let M be a semisimple left R -module. Prove that M is semisimply right $End_R(M)$ -module.	ple [5]
(4)	(a) If N is a proper submodule of a module M of finite length, protonate $l(N) < l(M)$, where $l(M)$ denotes the length of M.	ove [5]
	(b) Prove that a module is sum of simple submodules if its every so module is complemented in it.	ub- [4]

(c) Prove that an abelian group M is a right R-module if and only if [5] there exists a ring homomorphism $\phi : R \to End(M)$.

SECTION C (Attempt any two) (28 marks)

- (5) (a) For a set I, prove that there exists a free R-module F_I and a mapping [7]
 φ: I → F_I such that for any R-module M and a mapping f : I → M, there exists a unique R-homomorphism f̃ : F_I → M which satisfies φf̃ = f.
 - (b) For commutative ring R, the R-modules M, N and P, prove that $(M \otimes N) \otimes P \cong M \otimes (N \otimes P)$
- (6) (a) If a module P is a direct summand of a free module then prove that every homomorphism from P to a quotient of a module B can be lifted to B. Give an example to show that the conclusion need not hold for an arbitrary module.
 - (b) Let R be a principal ideal domain and M be a torsion module over [7]
 R. Prove that M = ⊕M_p where each M_p is p-primary submodule, p being prime in R.
- (7) (a) Let R be a PID and M be an R-module such that $M = \bigoplus_{i=1}^{n} M_i$, each M_i being cyclic. If M is bounded and cyclic, prove that each M_i is bounded and their bounds are pairwise co-prime.
 - (b) Construct an example of a free module which has a basis of cardinality n, for every $n \in \mathbb{N}$.
 - (c) For an abelian group G, prove that $\mathbb{Z} \otimes_{\mathbb{Z}} G \cong G$.

 \mathbf{H}

- 2-

[7]

[5+2]

[6]

[5]

[3]

Your Roll Number:

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI M.A./M.Sc. Mathematics Examinations, May 2019 Part I Semester II MATH14-202:TOPOLOGY-I

Time: 3 Hours

(

Maximum Marks: 70

Instructions: • Write your roll number on the space provided at the top of this page immediately on receipt of this question paper. •Section A is compulsory. Answer any **TWO** questions from Section B and **TWO** questions from Section C. • Each question carries equal marks.

Section A

(1)	(a) For the subset $A = \{1, \frac{1}{2}, \frac{1}{3}, \dots\}$ of the real line \mathbb{R} find ∂A .	[3.5 Marks]
	(b) Let $Y = \{(x, y) \in \mathbb{R}^2 : xy = 0\}$ be the subspace of the Euclidean space \mathbb{R}^2 and $p : \mathbb{R}^2 \to \mathbb{R}^1$ be the map defined by $p(x, y) = x$. Show that $p _Y$ is closed but not open.	[3.5 Marks]
	(c) Find limit(s) of the sequence $\langle 1/n \rangle$ if \mathbb{R} is assigned the co-finite topology.	
	(d) Show that a closed subspace of a Lindelöf space is Lindelöf.	[3.5 Marks]

Section B

(Attempt any TWO questions)

(2)	$\overline{A} = A \cup A'$	-
	(b) Prove that G is open in a topological space X if and only $\overline{G \cap \overline{A}} = \overline{G \cap A}$, for every subset A of X.	
	(c) Let \mathfrak{B} be a family of subsets of X such that $X = \bigcup \{B \mid B \in \mathfrak{B}\}$ and for every two members $B_1, B_2 \in \mathfrak{B}$ and for each point $x \in B_1 \cap B_2$, there exists $B_3 \in \mathfrak{B}$ with $x \in B_3 \subseteq B_1 \cap B_2$. Show that there is a topology on X for which \mathfrak{B} is a basis.	e, ∈ ut [4 Marks]
(3)	(a) Prove that $A \cup B$ is a connected subset of the Euclidean space \mathbb{R}^2 , where	e [5 Marks]
	 A = {(x, y) x is irrational and 0 ≤ y ≤ 1}, and B = {(x, y) x is rational and -1 ≤ y ≤ 0}. (b) Let {X_α, α ∈ A} be a family of topological spaces. Show the the component of a point x = (x_α) in the product space ΠX_α ΠC(x_α), where C(x_α) is the component of x_α in X_α. (c) Prove that a space X is locally path-connected if for each poin x ∈ X, and each open neighbourhood (nbd) U of x, there is 	nt

nbd V of x such that $V \subseteq U$ and any point of V can be joined to x by a path in U.	[4 Marks]
(4) (a) If A is a compact subset of a Hausdorff space X and $x \in X - A$, then show that there are disjoint open sets U and V such that $x \in U$ and $A \subseteq V$.	[5 Marks]
(b) Let X be any topological space and Y be a compact space. If N is an open nbd of the slice $\{x\} \times Y$ in $X \times Y$, then prove that there is an open nbd U of x such that $U \times Y \subseteq N$.	
(c) Show that every universal net in a compact space converges.	[5 Marks] [4 Marks]
Section C (Attempt any TWO questions)	
(5) (a) Let X and Y be topological spaces. Prove that a function $f: X \to Y$ is continuous $\Leftrightarrow f^{-1}(B^{\circ}) \subseteq (f^{-1}(B))^{\circ}$ for every subset B of $Y \Leftrightarrow \partial(f^{-1}(B)) \subseteq f^{-1}(\partial B)$ for every subset B of Y.	
(b) If $\{X_n : n \in \mathbb{N}\}$ is a countable family of metrisable spaces, then show that the product space $\prod X_n$ is metrisable.	[7 Marks] [7 Marks]
(6) (a) Let X be a topological space and $x \in X$ a cluster point of a net ϕ . Show that there is a subnet of ϕ which converges to x.	[6 Marks]
(b) Let X and Y be topological spaces. Then show that a function $f: X \to Y$ is continuous if the net $f \circ \phi$ in Y converges to $f(x)$ for every net ϕ in X converging to a point $x \in X$.	[4 Marks]
(c) Let X be a T_1 -space and $A \subseteq X$. Prove that A' is a closed set.	[4 Marks]
(7) (a) Show that \mathbb{R}_l (\mathbb{R} with the lower limit topology) is first countable but not second countable.	[5 Marks]
(b) Does every closed subspace of a separable space separable? Jus- tify.	[5 Marks]
(c) Let X be a first countable space. Show that X is Hausdorff if each convergent sequence in X has a unique limit.	[4 Marks]

Your Roll Number:

No. of Printed Pages 2

M.A./M.Sc. Mathematics Examinations, May 2019 Part I Semester II MATH14-203: Functional Analysis

Time: 3 hours

-

Maximum Marks: 70

Instructions: • Write your roll number on the space provided at the top of this page immediately on receipt of this question paper • Question No. 1 is compulsory • Answer Two questions from Section II and Two questions from Section III • Each question carries 14 marks. • Symbols have their usual meaning.

Section I (Question No. 1 is Compulsory: 14 marks)

- (1) (a) Define $f: X = (c_{00}, \|.\|_{\infty}) \to \mathbb{C}$ by $f(x) = \sum_{k=1}^{\infty} \xi_k, x = \langle \xi_k \rangle \in c_{00}.$ [2 Marks] Is f bounded? Justify your answer.
 - (b) Give an example of a total subset in ℓ^1 . Justify your answer. [3 Marks]
 - (c) Give an example, with justification, of a bijective isometry which is [3 Marks] not linear.
 - (d) Find the spectrum $\sigma(T)$ and spectral radius $r_{\sigma}(T)$ of [2 Marks] $T : (\mathbb{R}^3, \|.\|_2) \rightarrow (\mathbb{R}^3, \|.\|_2)$ given by $Tx = (\xi_2, -\xi_1, 0),$ $x = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3.$
 - (e) State the Hahn-Banach theorem for normed spaces. Show that if X [1+1== is a normed space and f(x) = f(y) for all $f \in X'$, then x = y. 2 Marks]
 - (f) Show that if H_1 and H_2 are Hilbert spaces and $T \in B(H_1, H_2)$, then [2 Marks] $||T^*T|| = ||T||^2$, where T^* is the Hilbert-adjoint operator of T.

Section II (Answer any Two questions: 2×14 marks = 28 marks)

(2)	(a) Show that if X and Y are normed a $T: X \to Y$ is bounded if and only if it	spaces, then a linear operator is continuous at 0 of X .	[5 Marks]
	(b) Show that the dual space X' of a norm	red space X is a Banach space.	[5 Marks]
	(b) Show that the dual space X of a norm		[4 Marks]
	(c) Show that a reflexive normed space is	$\operatorname{complete}$.	[4 Marks]
(3)) (a) Show that any two norms on a finite d equivalent. What happens if X is infir	imensional vector space X are nite dimensional? Justify your	[3+3= 6 Marks]
	answer. (b) Give an example, with justification, of a		[2 Marks]
	unitary.		[1+5=

(c) State and prove the projection theorem. 6 Marks

- 2-

[4 Marks] (4) (a) Can every norm on a vector space be obtained from an inner product? Justify your answer. [3+1=(b) Let T be a bounded linear operator on a complex inner product space X such that $\langle Tx, x \rangle = 0$ for all $x \in X$. Show that T = O. What 4 Marks happens if X is real inner product space? Justify your answer. (c) State and prove the Riesz's representation theorem for bounded sesquilin-[1+5=6 Marks ear forms. Section III (Answer any Two questions: 2×14 marks = 28 marks) (5) (a) Show that the resolvent operator $R_{\lambda}(T)$ of a bounded linear operator [5 Marks] T on a complex Banach space is locally holomorphic on the resolvent set $\rho(T)$. (b) Show that if Y is a proper closed subspace of a normed space X[5 Marks] and $x_o \in X \setminus Y$, then there exists a $\widetilde{f} \in X'$ such that $\widetilde{f}(x_o) = 1$, $\widetilde{f}(Y) = \{0\}, \text{ and } \|\widetilde{f}\| = \frac{1}{\operatorname{dist}(x_o, Y)}.$ (c) Define the canonical embedding. Show that the canonical embedding [1+1+2=4 Marks is a linear isometry. (6) (a) Show that if $X \neq \{0\}$ is a complex Banach space and $T \in B(X)$, then 5 Marks $\sigma(T)$ is compact. (b) Show that if X and Y are Banach spaces and $T \in B(X,Y)$ is 6 Marks surjective, then the image $T(B_o)$ of an open unit ball $B_o = B(0,1)$ $\subset X$ contains an open ball about 0 of Y. (c) Show that if X and Y are normed spaces and $T \in B(X, Y)$, then the [1+2=3 Marks adjoint operator T^{\times} of T is linear and bounded. (7) (a) Define weak convergence of a sequence $\langle x_n \rangle$ in a normed space |1+4=X. Show that $\langle x_n \rangle \subset X$ converges weakly to $x \in X$ if and only if 5 Marks $< ||x_n|| >$ is bounded and $f(x_n) \to f(x)$ for every f in a total subset $M \subset X'$. (b) Give an example of a linear operator T such that $\sigma_p(T)$ is contained 1+2=properly in $\sigma(T)$. Justify your answer. 3 Marks

(c) State and prove the closed graph theorem. [1+5=6 Marks]

Your Roll Number:

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI M.A./M.Sc. Mathematics Examinations, May 2019 Part I Semester II MATH14-204: FLUID DYNAMICS

Time: 3 hours

Maximum Marks: 70

[3]

Instructions: • Question No. 1 is compulsory. • Answer Two questions each from Sections B and C. \bullet All the symbols have their usual meaning unless otherwise mentioned.

Section A

- (1) Answer all parts:
 - (a) Prove that vortex lines and tubes can not originate or terminate at internal points in a fluid.
 - (b) For an incompressible inviscid fluid moving under an arbitrary body force \mathbf{F} per unit mass, show that the generation of vorticity is determined by the equation $d\zeta/dt = (\zeta \cdot \nabla)\mathbf{q} + \nabla \times \mathbf{F}$.
 - (c) Show that the velocity potential ϕ at a point P for a simple source of strength m at O is given by $\phi(r) = m/r$, where $r = |\mathbf{OP}|$.
 - (d) Determine the image of a line source in a circular cylinder.
 - (e) Find the dimensions of coefficient of viscosity and kinematic coefficient of viscosity.

Section B (Answer any two questions)

- (2) (a) Derive the equation of continuity for a region of fluid, which contains neither sources nor sinks. Using equation of continuity and suitable hypotheses, show that velocity potential is harmonic. [5+2]
 - (b) Determine the acceleration of a fluid particle, if the velocity of flow is [3] $(r^2z\cos\theta, rz\sin\theta, z^2t).$
 - (c) Show that $(x^2/a^2)\tan^2 t + (y^2/b^2)\cot^2 t = 0$ is a possible form for the bounding surface of a liquid, and find the normal velocity. 4
- (3) (a) Show that at any point P of a moving inviscid fluid the pressure is same 7 in all directions.
 - (b) If Σ is the solid boundary of a large spherical surface of radius R, containing fluid in motion and also enclosing one or more closed surfaces. If ϕ_P denotes the potential at any point P of the fluid, the $\phi_P \to C$ as $P \to \infty$, where C is a constant, provided that the fluid extends to infinity and is at rest there. [7]
- (4) (a) In a two dimensional motion, a source of strength m is placed at each of points (-1,0) and (1,0), and a sink of strength 2m is placed at the origin.

Show that the streamlines are the curves: $(x^2 + y^2)^2 = x^2 - y^2 + kxy$, where k is a parameter. [6] (b) State and prove Milne-Thomson's circle theorem. [5]

- (b) State and prove Mine-Thomson's circle theorem. [5]
- (c) Discuss the flow for which $w = z^2$.

Section C (Answer any two questions)

- (5) (a) Prove that the force exerted on a circular cylinder |z| = a in the irrotational flow produced by a line source m at z = 3a is X = ρm²/(48πa), Y = 0.
 - (b) A three-dimensional doublet of strength μ whose axis is in the direction **OX** is distant *a* from the rigid plane x = 0 which is the sole boundary of liquid of density ρ , infinite in extent. Find the pressure at a point on the boundary distant *r* from the doublet given that pressure at infinity is p_{∞} . Show that the pressure on the plane is least at a distance $a\sqrt{5}/2$ from the doublet. [6]
 - (c) Find the image of a simple source of strength m at (c, 0, 0) in a solid sphere. [2]
- (6) (a) Define axi-symmetric flows. Show that Stokes's Stream function is not [1+3]
 - (b) State and prove Kelvin's inversion theorem. [6]
 - (c) Determine the Stokes's Stream function for a doublet of strength M situated at origin whose axis is along OZ. [4]
- (7) (a) Show that the stress matrix is diagonally symmetric and contains only
 [6] six unknowns.
 - (b) Write the relations between stress and rate of strain in tensor form. [2]
 - (c) Consider the steady flow between two concentric infinite cylinders of radii a, b (b > a) with viscous liquid in between. The inner cylinder is held at rest whilst the outer is rotated with constant angular velocity Ω . Show that the fluid velocity at radial distance R has the magnitude $q = \Omega b^2 (R a^2 R^{-1}) (b^2 a^2)^{-1}$. [6]

[3]