

Department of Mathematics

University of Delhi

INVITED TALK

by

Ali Baklouti

University of Sfax - Tunisia

entitled

The Laplace Transform for Nilpotent Lie Groups and Operator Analogue of Müntz–Szàsz's Theorem

For any connected and simply connected, nilpotent Lie group G , we generate an operator analog of Müntz–Szàsz's theorem proved way back in the case of the interval $[0, 1]$. Such a result fails to hold when $[0, 1]$ is replaced by an unbounded interval, and the key question is to improve the result of Müntz giving the equivalence between the divergence of the series $\sum_{k \geq 1} \frac{1}{\lambda_k}$ and the density of $\mathbb{C}\text{-span}\{t^{\lambda_1}, t^{\lambda_2}, \dots\}$ in $L^2([0, 1])$, for a strictly increasing sequence $(\lambda_k)_{k \in \mathbb{N}^*}$ of positive real numbers. Thanks to the group Fourier transform operator, we construct a non-commutative analogue of the Laplace operator $L : L^1(G) \cap L^2(G) \ni f \mapsto L(f)$. For general nilpotent Lie groups, we show that the trivial function is the unique one meeting the assumptions $L(f)(\lambda_k) = 0$ for any $k \in \mathbb{N}^*$. We show that the equivalence holds for Heisenberg groups.

January 15, 2026

Seminar Hall, North Campus

02:30 pm

Ajay Kumar
Coordinator

Tarun Kumar Das
Head