

Mathematical Model for Fire Spread

fppt.com

Prof. Nita H. Shah Department of Mathematics Gujarat University Ahmedabad

What is Fire?

 Heat is supplied from the fire to the potential fuel, the surface is dehydrated and further heating raises the surface temperature until the fuel begins to pyrolyze and release combustible gases.

When the gas evolution rate from the potential fuel is sufficient to support combustion, the gas is ignited by the flame and the fire advances to a new position.

 Gradually, a constant rate of spread is attained which is called "quasi-steady state" wherein the fire advances at a rate that is the average of all the elemental rates.

A mathematical model to determine rate of fire spread and its intensity is formulated. The model is developed by **R.C. Rothermal (1972) and it** is considered as the basis in the National Fire Danger Rating System.

The model considers physical and chemical properties of the fuel and the environmental conditions in which it is expected to tingle.

April 2, 2015 IWM2015 Delhi Uni.

- The physical properties incorporated are
- 1. fuel loading

2. fuel depth

- 3. fuel particle surface area to volume ratio
- 4. fuel particle moisture, and
- 5. the moisture content at which extinction is expected.

- Environmental inputs are
- 1. mean wind velocity
- 2. slope of terrain.

Mathematical Model

R	quasi-steady rate of spread, ft/min
$I_{\chi_{ig}}$	Horizontal heat flux absorbed by a unit volume of the fuel at the time of ignition B.t.u./ft ² min
ρ_{be}	Effective bulk density (the amount of fuel per unit volume of the fuel bed raised to ignition ahead of the advancing fire), lb/ft ³
Q_{ig}	Heat of pre-ignition (the heat required to bring a unit weight of fuel to ignition), B.t.u./lb
$\left(\frac{\partial I_z}{\partial z}\right)_{z_c}$	The gradient of the vertical intensity evaluated at a plane at a constant depth, z_c , of the fuel bed, B.t.u./ft ³ min
X	Horizontal coordinate
Z	Vertical coordinate

Using conservation of energy principle to a unit volume of fuel ahead of an advancing fire in a homogeneous fuel bed (by Fransen (1971))

heat flux received from the source heat required for

(1)

fppt.com

ignition by the potential fuel

The heat required for ignition depends upon

(a)Ignition temperature

(b) moisture content of the fuel, and

(c)Amount of fuel involved in the ignition

process.

April 2, 2015 IWM2015 Delhi Uni.

fopt.com

• The energy per unit mass required for ignition is the heat of pre-ignition, Q_{ig} . $Q_{ig} = f(M_f, T_{ig}), B.t.u. / lb$ (2)

where

 M_f : ratio of fuel moisture to ovendry weight T_{ig} : ignition temp.

- The amount of fuel involved in the ignition process is the effective bulk density, ρ_{be}.
- An effective heating number s is ratio of the effective bulk density to the actual bulk density.

The effective heating number is dimensionless which will be nearly unity for fine fuels and decrease to zero as fuel size increases. Therefore,

 $\rho_{be} = f(\text{bulk density, fuel size})$ (4)

Propagating Flux

It is given by

$$\boldsymbol{I}_{p} = \boldsymbol{I}_{Xig} + \int_{-\infty}^{0} \left(\frac{\partial \boldsymbol{I}_{z}}{\partial z}\right)_{z_{c}} dx$$

Ű

∜

(5)

16

fppt.com

horizontalgradient of the vertical flux integrated fromflux-infinity to the fire front

 The figures indicate that the vertical flux is more significant during winddriven and upslope fires because the flame tilts over the potential fuel, thereby, increasing radiation, causing direct flame contact and convective heat transfer to the potential fuel.

- Assume that the vertical flux is small for no-wind fires and let $I_p = (I_p)_0$. This is the basic heat flux component to which all additional effects of wind and slope are related.
- With (3) (5) in (1) and $I_p = (I_p)_0$ and $R = R_0$

for the no-wind case, we get

Reaction Intensity

The energy release rate of the fire front

is produced by burning gases released

from the organic matters in the fuels.

April 2, 2015 IWM2015 Delhi Uni.

 The rate of change of this organic matter from a solid to a gas is a good approximation of the subsequent heat release rate of the fire.

April 2, 2015 IWM2015 Delhi Uni.

 The heat release rate per unit area of the front is called the reaction intensity and is defined as

mass loss Heat content of fuel rate per unit area in the fire front

 $\frac{dw}{dt}$

 $I_R =$

April 2, 2015 IWM2015 Delhi Uni.

(7)

 The reaction intensity is a function of fuel parameters such as particle size, bulk density, moisture, and chemical composition.

 The reaction intensity is the source of the no-wind propagating flux

$$I_p \Big)_0 = f \left(I_R \right) \tag{8}$$

fopt.com

Effect of Wind & Slope

 Wind and slope change the propagating heat flux by exposing the potential fuel to additional convective and radiant heat.

• Let ϕ_w and ϕ_s represent the additional propagating flux produced by wind and slope. The total propagating flux is

$$I_p = \left(I_p\right)_0 \left(1 + \phi_w + \phi_s\right) \tag{9}$$

Approximate rate of spread (eq.(1)) becomes

$$R = \frac{\left(I_{p}\right)_{0}\left(1 + \phi_{w} + \phi_{s}\right)}{\rho_{b}\varepsilon Q_{ig}}$$
(10)
April 2, 2015 IWM2015 Delhi Uni.

Heat of Pre-ignition

$C_{_{pd}}$	Specific heat of dry wood
ΔT_{ig}	Temperature range to ignition
${\pmb M}_f$	Fuel moisture lb. water / lb. dry wood
$C_{_{pw}}$	Specific heat of water
ΔT_b	Temperature range to boiling
V	Latent heat of vaporization

Q_{ig} for cellulosic fuels is determined by considering the change in specific heat from ambient to ignition temperature and the latent heat of vaporization of the moisture as

$$Q_{ig} = C_{pd} \Delta T_{ig} + M_f \left(C_{pw} \Delta T_b + V \right)$$
(11)

Taking temperature to ignition in the range of 20°c to 320°c and boiling temperature to be @ 100°c, eq. (11) becomes

$$Q_{ig} = 250 + 1116M_f, B.t.u. / lb$$
(12)

April 2, 2015 IWM2015 Delhi Uni.

Effective Bulk Density

To determine the effective bulk density,

we need to compute the efficiency of

heating as a function of particle size.

April 2, 2015 IWM2015 Delhi Uni.

An exponential fit is given by

 $\varepsilon = exp\left(-\frac{138}{\sigma}\right)$

where σ is particle surface area to volume ratio, ft⁻¹

(13)

• Rearrange eq.(7) as

$$I_{R} = -\left(\frac{dw}{dx}\right)\left(\frac{dx}{dt}\right)h$$
(15)
where $\frac{dx}{dt} = R$, the quassy-steady rate of spread
 $\therefore I_{R}dx = -Rhdw$
(16)

To solve (16), integrate x over the reaction zone depth D, and w over the limits of loading in the reaction zone.

$I_{R}\int_{0}^{D} dx = -Rh\int_{w_{n}}^{w_{r}} dw \implies I_{R}D = Rh(w_{n} - w_{r}) \quad (18)$ where

D	Reaction zone depth (front to rear)
W _n	Net initial fuel loading, lb/ft ²
W _r	Residue loading immediately after passage of the reaction zone, lb/ft ²

April 2, 2015 IWM2015 Delhi Uni.

33

The time taken for the fire front to travel a distance equivalent to the depth of one reaction zone is the reaction time,

$$\tau_R = \frac{D}{R} \tag{19}$$

Then eq. (18) becomes

$$I_{R} = \frac{h(w_{n} - w_{r})}{\tau_{R}}$$
(20)

 Next, we define a maximum reaction intensity where there is no loading residue left after the reaction zone is passed and where the reaction time remains unchanged.

The reaction zone efficiency is

$$\eta_{\delta} = \frac{I_R}{I_{R \max}} = \frac{w_n - w_r}{w_n}$$
(22)
$$\therefore I_R = \frac{w_n h \eta_{\delta}}{\tau_R}$$
(23)

In (23), the net fuel loading is given by

 $w_n = \frac{w_0}{1 + S_T}$ (24) where $w_0 = \text{ovendry fuel loading, lb/ft}^2$ $S_T = \text{fuel mineral content, lb minerals/lb dry fuel}$ April 2, 2015 IWM2015 Delhi Uni. 24

Reaction Velocity

- The reaction velocity denotes the
 - completeness and rate of fuel
 - consumption. It is defined as the ratio
 - of the reaction zone efficiency to the reaction time.

Effective Fuel Parameters for Reaction Velocity

- 1. Moisture content
- 2. Mineral content
- 3. Particle size, and
- 4. Fuel bed bulk density

Γ'	Potential reaction velocity/min
$\eta_{_M}$	Moisture damping coefficient having values ranging from 1 to 0
η_{s}	Mineral damping coefficient having value ranging from 1 to 0

Then

$$\Gamma = \Gamma' \eta_M \eta_s$$
(26)
then the reaction intensity is
$$I_R = w_n h \Gamma' \eta_M \eta_s$$
(27)

One can evaluate reaction velocity and the moisture and mineral damping coeffiecients by experiments.

Moisture Damping coefficient

It is defined as

$$\eta_M = \frac{I_R}{I_{R \max}} \bigg|_{M_f = 0}$$

(28)

In adjacent fig., M_f is fuel moisture and M_χ is the moisture content of the fuel at which the fire will not spread.

Moisture damping coefficient accounts for the decrease in intensity caused by the combination of fuel that initially contained moisture.

Mineral Damping coefficient

 It was evaluated from thermo gravimetric analysis (TGA) data of natural fuels by Philot (1968). It is assumed that the ration of the normalized decomposition rate will be same as the normalized reaction intensity.

April 2, 2015 IWM2015 Delhi Uni.

foot.com

(30)

where S_e is effective

mineral content.

Physical Fuel Parameters

Next, we need to consider two

parameters:

The reaction intensity – fuel bed compactness, and

2. Fuel particle size

April 2, 2015 IWM2015 Delhi Uni.

Assume that low values of fire intensity and rate of spread occur at the two extremes of compactness (loose and dense).

In dense beds, this can be attributed to low air-to-fuel ratio and to poor penetration of the heat beyond the upper surface of the fuel array. In loose beds, low intensity and poor spread are attributed to heat transfer looses between particles and to lack of fuels.

April 2, 2015 IWM2015 Delhi Uni.

 Between these two extremes, there must be an optimum best equilibrium of air, fuel and heat transfer for both maximum fire intensity and reaction velocity.

April 2, 2015 IWM2015 Delhi Uni.

 The compactness of the fuel bed is quantified by the packing ration, which is the ratio of the fuel array to fuel particle density.

> packing ratio, $\beta = \frac{\rho_b}{\rho_p}$ (31) where ρ_b : fuel array bulk density, lb/ft³ ρ_p : fuel particle density, lb/ft³

The surface area-to-volume ratio, σ is used to quantify the particle size. For fuels that are long w.r.t. the thickness

 $\sigma = \frac{4}{d}$ (32) here *d* denotes diameter of circular particles or edge length of square particles.

The reaction time, τ_R is defined on the derivative curve as the time from initial mass loss until the loss stabilizes at a steady rate.

During the reaction time mass loss rate is linear. Also the duration of the constant mass rate is dependent on the length of platform.

The reaction time could be thought of as

the fire burned off.

The mass loss rate is

 $\frac{dm}{dt} = (w_n - w_r)RW$ W : width of the platform.

The efficiency of fire is

$$\eta_{\delta} = \frac{1}{w_n RW} \frac{dm}{dt}$$

April 2, 2015 IWM2015 Delhi Uni.

(33)

(34)

With efficiency and the reaction time, the reaction velocity is

 $=\frac{1}{w_n RW\tau_R}\frac{dm}{dt}$

(35)

18 The potential reaction 16 – ľ', min. [–] 14 Legend: velocity to disassociate 12 Excelsior '4" Cribs Potential reaction velocity 10 1/2" Cribs the reaction velocity 6 from the effects of the 4 2 moisture and minerals .06 0 .02 .04 .08 .12 .10 Packing ratio - B of the fuel is $\Gamma' = \frac{I'}{I'}$. $\eta_M \eta_s$ **Tightly packed fine fuels** The reaction velocity must have lower reaction drop to zero if there is no velocity than do longer fuels at the same packing fuel to support combustion. rat

fppt.com

fppt.com

/

Combining these two eqs. gives

$$\Gamma' = \Gamma'_{\max} \left(\frac{\beta}{\beta_{op}}\right)^{A} \exp\left[A\left(1 - \frac{\beta}{\beta_{op}}\right)\right]$$
(38)
with $A = \frac{1}{4.77\sigma^{0.1} - 7.27}$ (39)

April 2, 2015 IWM2015 Delhi Uni.

56

These will predict reaction velocity for any combination of fuel particle size and any packing ratio. The eqs. will predict reasonable values when input parameters are extrapolated. This will help us to predict reaction intensity and, subsequently, rate of spread over a wide of fuel and environmental range April 2, 2015 IWM2015 Delhi Uni. combinatio fppt.com

Propagating Flux

The no-wind propagating flux is

 $(I_p)_0 = R_0 \rho_b \varepsilon Q_{ig}$ (we know from (6))

A ratio ξ relating the propagating flux to the reaction intensity is

A respective fit is

$\xi = \frac{1}{192 + 0.259\sigma} \exp\left[(0.792 + 0.681\sqrt{\sigma})(\beta + 0.1)\right]$ (42)

April 2, 2015 IWM2015 Delhi Uni.

60

It is seen that $(I_p)_0$ increases with increase in β , but at a decreasing rate. $(I_p)_0$ will attain a maximum and then decreases.

This is reasonable, considering the fact that the fuel array is becoming so compact that the intensity has decreased.

fppt.com

Combining the heat source and heat sink terms results into the no-wind rate of

spread equation as

$$R_0 = \frac{I_R \xi}{\rho_b \varepsilon Q_{ig}}$$

April 2, 2015 IWM2015 Delhi Uni.

(43)

Fire Flames

Reference

1. RichardC. Rothermal(1972):IntermountainForestandRangeexperimentstationForestservice, Res.

Paper 115.

Thank you very much for your attention

fppt.com

66