Orthogonality to matrix subspaces

Priyanka Grover

Indian Institute of Technology, Delhi

April 2, 2015

Let \mathcal{W} be a subspace of \mathbb{R}^n .

Let \mathscr{W} be a subspace of \mathbb{R}^n . Let $x \in \mathbb{R}^n$ be any point.

Let \mathcal{W} be a subspace of \mathbb{R}^n . Let $x \in \mathbb{R}^n$ be any point.

The orthogonal projection of x onto \mathcal{W} , namely \hat{w} is the closest point in \mathcal{W} to x.

$$\|x - \hat{w}\| < \|x - w\|$$
 for all $w \in \mathcal{W}, w \neq \hat{w}$

Let \mathcal{W} be a subspace of \mathbb{R}^n . Let $x \in \mathbb{R}^n$ be any point.

The orthogonal projection of x onto \mathcal{W} , namely \hat{w} is the closest point in \mathcal{W} to x.

$$\|x - \hat{w}\| < \|x - w\|$$
 for all $w \in \mathcal{W}, w \neq \hat{w}$

 \hat{w} is called the best approximation from \mathcal{W} to x.

Let $\mathbb{M}(n)$ be the space of $n \times n$ complex matrices. Let \mathscr{W} be a subspace of $\mathbb{M}(n)$. Let $A \notin \mathscr{W}$. Consider the problem of finding a best approximation from \mathscr{W} to A.

That is, find an element W such that

$$\min_{W\in\mathscr{W}}\|A-W\|=\|A-\hat{W}\|.$$

A specific question: When is zero a best approximation from \mathcal{W} to A? That is, when do we have

$$\min_{W\in\mathscr{W}}\|A-W\|=\|A\|?$$

Suppose \mathscr{W} is the subspace spanned by a single element B. Then the above problem reduces to

$$\min_{\lambda \in \mathbb{C}} \|A - \lambda B\| = \|A\|.$$

Let $\mathbb{M}(n)$ be the space of $n \times n$ complex matrices. Let \mathscr{W} be a subspace of $\mathbb{M}(n)$. Let $A \notin \mathscr{W}$. Consider the problem of finding a best approximation from \mathscr{W} to A.

That is, find an element \hat{W} such that

$$\min_{W\in\mathscr{W}}\|A-W\|=\|A-\hat{W}\|.$$

A specific question: When is zero a best approximation from \mathcal{W} to A? That is, when do we have

$$\min_{W \in \mathcal{W}} \|A - W\| = \|A\|$$
?

Suppose \mathcal{W} is the subspace spanned by a single element B. Then the above problem reduces to

$$\min_{\lambda \in \mathbb{C}} \|A - \lambda B\| = \|A\|.$$

Let $\mathbb{M}(n)$ be the space of $n \times n$ complex matrices. Let \mathscr{W} be a subspace of $\mathbb{M}(n)$. Let $A \notin \mathscr{W}$. Consider the problem of finding a best approximation from \mathscr{W} to A.

That is, find an element \hat{W} such that

$$\min_{W \in \mathscr{W}} \|A - W\| = \|A - \hat{W}\|.$$

A specific question: When is zero a best approximation from \mathcal{W} to A? That is, when do we have

$$\min_{W\in\mathscr{W}}\|A-W\|=\|A\|?$$

Suppose \mathcal{W} is the subspace spanned by a single element B. Then the above problem reduces to

$$\min_{\lambda \in \mathbb{C}} \|A - \lambda B\| = \|A\|.$$

Let $\mathbb{M}(n)$ be the space of $n \times n$ complex matrices. Let \mathscr{W} be a subspace of $\mathbb{M}(n)$. Let $A \notin \mathscr{W}$. Consider the problem of finding a best approximation from \mathscr{W} to A.

That is, find an element \hat{W} such that

$$\min_{W\in\mathscr{W}}\|A-W\|=\|A-\hat{W}\|.$$

A specific question: When is zero a best approximation from \mathscr{W} to A? That is, when do we have

$$\min_{W\in\mathscr{W}}\|A-W\|=\|A\|?$$

Suppose \mathcal{W} is the subspace spanned by a single element B. Then the above problem reduces to

$$\min_{\lambda \in \mathbb{C}} \|A - \lambda B\| = \|A\|.$$

Definition

A is said to be Birkhoff-James orthogonal to B if

$$\min_{\lambda \in \mathbb{C}} \|\mathbf{A} - \lambda \mathbf{B}\| = \|\mathbf{A}\|,$$

that is,

$$\|A + \lambda B\| \ge \|A\|$$
 for all $\lambda \in \mathbb{C}$.

In general, if $\mathscr X$ is a complex normed linear space, then an element x is said to be Birkhoff-James orthogonal to another element y if

$$\|x + \lambda y\| \ge \|x\|$$
 for all $\lambda \in \mathbb{C}$.

If $\mathscr X$ is a pre-Hilbert space with inner product $\langle \cdot, \cdot \rangle$, then this definition is equivalent to $\langle x, y \rangle = 0$.

Definition

A is said to be Birkhoff-James orthogonal to B if

$$\min_{\lambda \in \mathbb{C}} \|\mathbf{A} - \lambda \mathbf{B}\| = \|\mathbf{A}\|,$$

that is,

$$\|A + \lambda B\| \ge \|A\|$$
 for all $\lambda \in \mathbb{C}$.

In general, if $\mathscr X$ is a complex normed linear space, then an element x is said to be Birkhoff-James orthogonal to another element y if

$$||x + \lambda y|| \ge ||x||$$
 for all $\lambda \in \mathbb{C}$.

If $\mathscr X$ is a pre-Hilbert space with inner product $\langle \cdot, \cdot \rangle$, then this definition is equivalent to $\langle x, y \rangle = 0$.

Geometric interpretation

Geometric interpretation

Geometric interpretation

 $||x + ty|| \ge ||x||$ for all $t \in \mathbb{R}$ if and only if x and y are orthogonal.

Birkhoff-James orthogonality

$$\mathscr{X}$$
 real Banach space $x, y \in \mathscr{X}$

Observation

Either $||x + ty|| \ge ||x||$ for all $t \ge 0$ or $||x + ty|| \ge ||x||$ for all $t \le 0$.

x is Birkhoff-James orthogonal to y if both of them are satisfied.

Properties

- This orthogonality is clearly homogeneous: x orthogonal to $y \Rightarrow \lambda x$ orthogonal to μy for all scalars λ, μ .
- Not symmetric: x orthogonal to $y \neq y$ orthogonal to x.
- Not additive: x orthogonal to $y, z \neq x$ orthogonal to y + z.

New method

$$||x + ty|| \ge ||x||$$
 for all $t \in \mathbb{R}$

- Let f(t) = ||x + ty|| mapping \mathbb{R} into \mathbb{R}_+ .
- To say that $||x + ty|| \ge ||x||$ for all $t \in \mathbb{R}$ is to say that f attains its minimum at the point 0.
- A calculus problem?
- If f were differentiable at x, then a necessary and sufficient condition for this would have been that the derivative D f(0) = 0.
- But the norm function may not be differentiable at x.
- However, f is a convex function, that is, $f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha) f(y)$ for all $x, y \in \mathcal{X}, 0 \le \alpha \le 1$.
- The tools of convex analysis are available.

Orthogonality in matrices

 $\mathbb{M}(n)$: the space of $n \times n$ complex matrices

$$\langle A, B \rangle = \operatorname{tr}(A^*B)$$

 $\|\cdot\|$ is the operator norm, $\|A\| = \sup_{\|x\|=1} \|Ax\|$.

Theorem (Bhatia, Šemrl; 1999)

Let $A, B \in \mathbb{M}(n)$. Then $A \perp_{BJ} B$ if and only if there exists x : ||x|| = 1, ||Ax|| = ||A|| and $\langle Ax, Bx \rangle = 0$.

Importance: It connects the more complicated Birkhoff-James orthogonality in the space $\mathbb{M}(n)$ to the standard orthogonality in the space \mathbb{C}^n .

Bhatia-Šemrl Theorem

- Let $f: t \to ||A + tB||, A \ge 0$.
- $A \perp_{BJ} B$ if and only if f attaines its minimum at 0.
- f is a convex function but may not be differentiable.

Subdifferential

Definition 1

Let $f: \mathscr{X} \to \mathbb{R}$ be a convex function. The *subdifferential* of f at a point $a \in \mathscr{X}$, denoted by $\partial f(a)$, is the set of continuous linear functionals $\varphi \in \mathscr{X}^*$ such that

$$f(y) - f(a) \ge \operatorname{Re} \varphi(y - a)$$
 for all $y \in \mathscr{X}$.

Let $f : \mathbb{R} \to \mathbb{R}$ be defined as

$$f(x)=|x|.$$

This function is differentiable at all $a \neq 0$ and D f(a) = sign(a). At zero, it is not differentiable.

Let $f : \mathbb{R} \to \mathbb{R}$ be defined as

$$f(x)=|x|.$$

This function is differentiable at all $a \neq 0$ and D f(a) = sign(a). At zero, it is not differentiable.

Note that for $v \in \mathbb{R}$,

$$f(y) = |y| \ge f(0) + v.y = v.y$$

holds for all $y \in \mathbb{R}$ if and only if $|v| \leq 1$.

Let $f : \mathbb{R} \to \mathbb{R}$ be the map defined as

$$f(x) = \max\left\{0, \frac{x^2 - 1}{2}\right\}.$$

Let $f : \mathbb{R} \to \mathbb{R}$ be the map defined as

$$f(x)=\max\left\{0,\frac{x^2-1}{2}\right\}.$$

Then f is differentiable everywhere except at x = -1, 1. We have

$$\partial f(1) = [0,1]$$
 and $\partial f(-1) = [-1,0]$.

Let $f: \mathscr{X} \to \mathbb{R}$ be defined as

$$f(a)=\|a\|.$$

Then for $a \neq 0$,

$$\partial f(a) = \{ \varphi \in \mathscr{X}^* : \text{ Re } \varphi(a) = ||a||, ||\varphi|| \le 1 \},$$

and

$$\partial f(0) = \{ \varphi \in \mathscr{X}^* : \|\varphi\| \le 1 \}.$$

In particular, when $\mathscr{X} = \mathbb{M}(n)$, we get that for $A \neq 0$,

$$\partial \textit{f}(\textit{A}) = \{\textit{G} \in \mathbb{M}(\textit{n}): \text{ Re tr } \textit{G}^*\textit{A} = \|\textit{A}\|, \|\textit{G}\|_* \leq 1\}.$$

 $(\|\cdot\|_* \text{ is the dual norm of } \|\cdot\|)$

Let $f: \mathbb{R}^n \to \mathbb{R}$ be defined as

$$f(a) = ||a||_{\infty} = \max\{|a_1|, \dots, |a_n|\}.$$

Then for $a \neq 0$,

$$\partial f(a) = \operatorname{conv}\{\pm e_i : |a_i| = ||a||_{\infty}\}.$$

$$f(y) - f(a) \ge \operatorname{Re} \varphi(y - a)$$
 for all $y \in \mathscr{X}$.

Proposition

A function $f: \mathscr{X} \to \mathbb{R}$ attains its minimum value at $a \in \mathscr{X}$ if and only if $0 \in \partial f(a)$.

In our case,

$$f(t) = \|A + tB\|$$

and f attains minimum at 0. So

$$0 \in \partial f(0)$$
.

Subdifferential calculus

Precomposition with an affine map

Let \mathscr{X}, \mathscr{Y} be any two Banach spaces. Let $g : \mathscr{Y} \to \mathbb{R}$ be a continuous convex function. Let $S : \mathscr{X} \to \mathscr{Y}$ be a linear map and let $L : \mathscr{X} \to \mathscr{Y}$ be the continuous affine map defined by $L(x) = S(x) + y_0$, for some $y_0 \in \mathscr{Y}$. Then

$$\partial (g \circ L)(a) = S^* \partial g(L(a))$$
 for all $a \in \mathscr{X}$.

In our case, let $S: t \mapsto tB$, $L: t \mapsto A + tB$ and

$$g: X \mapsto ||X||$$
.

And f(t) = ||A + tB|| is the composition of g and L. So

$$\partial f(0) = S^* \partial ||A||,$$

where $S^*(T) = \text{Re tr } B^*T$.

Bhatia-Šemrl Theorem

Watson, 1992

For any $A \in \mathbb{M}(n)$,

$$\partial \|A\| = \text{conv}\{uv^* : \|u\| = \|v\| = 1, Av = \|A\|u\}.$$

If $A \ge 0$, then

$$\partial ||A|| = \text{conv}\{uu^* : ||u|| = 1, Au = ||A||u\}.$$

Bhatia-Šemrl Theorem

- $0 \in \partial f(0) = S^*\partial ||A||$ if and only if $0 \in \text{conv}\{ \text{ Re } \langle u, Bu \rangle : ||u|| = 1, Au = ||A||u \}.$
- By Hausdorff-Toeplitz Theorem, $\{ \text{ Re } \langle u, Bu \rangle : ||u|| = 1, Au = ||A||u \} \text{ is convex.}$
- $0 \in S^*\partial ||A||$ if and only if $0 \in \{ \text{ Re } \langle u, Bu \rangle : ||u|| = 1, Au = ||A||u \}.$
- There exists x : ||x|| = 1, Ax = ||A||x and $Re \langle Ax, Bx \rangle = 0$.

Application

Distance of A from $\mathbb{C}I$:

$$\mathsf{dist}(A, \mathbb{C}I) = \mathsf{min}\{\|A - \lambda I\| : \lambda \in \mathbb{C}\}\$$

Variance of A with respect to x:

For
$$x : ||x|| = 1$$
,

$$\operatorname{var}_{x}(A) = \|Ax\|^{2} - |\langle x, Ax \rangle|^{2}.$$

Corollary

Let $A \in \mathbb{M}(n)$. With notations as above, we have

$$\operatorname{dist}(A,\mathbb{C}I)^2 = \max_{\|x\|=1} \operatorname{var}_x(A).$$

$$\mathscr{W}$$
: subspace of $\mathbb{M}(n)$

Consider the problem of finding \hat{W} such that

$$\min_{\boldsymbol{W} \in \mathscr{W}} \|\boldsymbol{A} - \boldsymbol{W}\| = \|\boldsymbol{A} - \hat{\boldsymbol{W}}\|$$

Examples

1) Let
$$\mathcal{W} = \{ W : \text{tr } W = 0 \}$$
. Then

$$\min_{W \in \mathscr{W}} ||A - W|| = \frac{|\operatorname{tr}(A)|}{n}.$$

$$\hat{W} = A - \frac{\operatorname{tr}(A)}{n}I.$$

2) Let
$$\mathcal{W} = \{ W : W = W^* \}$$
. For any A ,

$$\hat{W} = \frac{1}{2}(A + A^*) = \text{Re } A.$$

When is zero matrix a best approximation to \mathcal{W} ?

A is said to be Birkhoff-James orthogonal to \mathscr{W} ($A \perp_{BJ} \mathscr{W}$) if

$$||A + W|| \ge ||A||$$
 for all $W \in \mathcal{W}$.

 \mathscr{W}^{\perp} : the orthogonal complement of \mathscr{W} , under the usual Hilbert space orthogonality in $\mathbb{M}(n)$ with the inner product $\langle A,B\rangle=\operatorname{tr}(A^*B)$.

Bhatia-Šemrl theorem: $A \perp_{BJ} \mathbb{C}B$ if and only if there exists a positive semidefinite matrix P of rank one such that $\operatorname{tr} P = 1$, $\operatorname{tr} A^*AP = \|A\|^2$ and $AP \in (\mathbb{C}B)^{\perp}$.

 $\mathbb{D}(n;\mathbb{R})$: the space of real diagonal $n \times n$ matrices

A matrix A is said to be minimal if $||A + D|| \ge ||A||$ for all $D \in \mathbb{D}(n; \mathbb{R})$, i.e. A is orthogonal to the subspace $\mathbb{D}(n; \mathbb{R})$.

Theorem (Andruchow, Larotonda, Recht, Varela; 2012)

A Hermitian matrix A is minimal if and only if there exists a P > 0 such that

$$A^2P = ||A||^2P$$

and

all the diagonal elements of AP are zero.

Question: Similar characterizations for other subspaces?

Theorem

Let $A \in \mathbb{M}(n)$ and let \mathscr{W} be a subspace of $\mathbb{M}(n)$. Then $A \perp_{BJ} \mathscr{W}$ if and only if there exists $P \geq 0$, tr P = 1, such that

$$A^*AP = \|A\|^2P$$

and

$$AP \in \mathscr{W}^{\perp}$$
.

Moreover, we can choose P such that rank $P \le m(A)$, where m(A) is the multiplicity of the maximum singular value ||A|| of A.

m(A) is the best possible upper bound on rank P.

Consider $\mathcal{W} = \{X : \operatorname{tr} X = 0\}.$

Then $\{A: A \perp_{BJ} \mathscr{W}\} = \mathscr{W}^{\perp} = \mathbb{C}I$.

If $A \perp_{BJ} \mathcal{W}$, then it has to be of the form $A = \lambda I$, for some $\lambda \in \mathbb{C}$.

When $A \neq 0$ then m(A) = n.

Let P be any density matrix satisfying $AP \in \mathcal{W}^{\perp}$. Then $AP = \mu I$, for some $\mu \in \mathbb{C}, \mu \neq 0$.

If *P* also satisfies $A^*AP = ||A||^2P$, then we get $P = \frac{\mu}{\lambda}I$. Hence rank P = n = m(A).

Observation: In general, the set $\{A : A \perp_{BJ} \mathcal{W}\}$ need not be a subspace.

Consider the subspace $\mathcal{W} = \mathbb{C}I$ of $\mathbb{M}(3)$. Let

$$A_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 and $A_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$.

Then $A_1, A_2 \perp_{BJ} \mathcal{W}$.

Then
$$A_1 + A_2 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
, $||A_1 + A_2|| = 2$.

But
$$||A_1 + A_2 - \frac{1}{2}I|| = \frac{3}{2} < ||A_1 + A_2||$$
. Hence $A_1 + A_2 \not\perp_{BJ} \mathcal{W}$.

Distance to any subalgebra of $\mathbb{M}(n)$

 $dist(A, \mathcal{W})$: distance of a matrix A from the subspace \mathcal{W}

$$dist(A, \mathcal{W}) = \min \{ ||A - W|| : W \in \mathcal{W} \}.$$

We have seen that

$$\operatorname{dist}(A,\mathbb{C}I)^2 = \max_{\|x\|=1} \operatorname{var}_x(A).$$

This is equivalent to saying that

$$\operatorname{dist}(A, \mathbb{C}I)^2 = \max \Big\{ \operatorname{tr}(A^*AP) - |\operatorname{tr}(AP)|^2 : P \ge 0, \operatorname{tr}P = 1, \operatorname{rank}P = 1 \Big\}.$$

Let \mathscr{B} be any C^* subalgebra of $\mathbb{M}(n)$.

Similar distance formula?

(This question has been raised by Rieffel)

Distance to a subalgebra of M(n)

 $\mathcal{C}_{\mathscr{B}}: \mathbb{M}(n) \to \mathscr{B}$ denote the projection of $\mathbb{M}(n)$ onto \mathscr{B} .

Theorem

For any $A \in \mathbb{M}(n)$

$$dist(A, \mathcal{B})^{2} = \max\{tr(A^{*}AP - \mathcal{C}_{\mathcal{B}}(AP)^{*}\mathcal{C}_{\mathcal{B}}(AP)\mathcal{C}_{\mathcal{B}}(P)^{-1}) : P \geq 0, tr P = 1\},$$

where $C_{\mathscr{B}}(P)^{-1}$ denotes the Moore-Penrose inverse of $C_{\mathscr{B}}(P)$. The maximum on the right hand side can be restricted to rank $P \leq m(A)$.

The quantity on the right also enjoys the property of being translation invariant.

REFERENCES:

- T. Bhattacharyya, P. Grover, Characterization of Birkhoff-James orthogonality, J. Math. Anal. Appl. 407 (2013) 350–358.
- P. Grover, Orthogonality to matrix subspaces, and a distance formula, *Linear Algebra Appl.* 445 (2014) 280–288.
- P. Grover, Some problems in differential and subdifferential calculus of matrices, Ph. D. thesis, Indian Statistical Institute, 2014.

THANK YOU