Orthogonality to matrix subspaces

Priyanka Grover

Indian Institute of Technology, Delhi

April 2, 2015

Motivation

Let \mathscr{W} be a subspace of \mathbb{R}^{n}.

Motivation

Let \mathscr{W} be a subspace of \mathbb{R}^{n}. Let $x \in \mathbb{R}^{n}$ be any point.

Motivation

Let \mathscr{W} be a subspace of \mathbb{R}^{n}. Let $x \in \mathbb{R}^{n}$ be any point.

The orthogonal projection of x onto \mathscr{W}, namely \hat{w} is the closest point in \mathscr{W} to x.

$$
\|x-\hat{w}\|<\|x-w\| \text { for all } w \in \mathscr{W}, w \neq \hat{w}
$$

Motivation

Let \mathscr{W} be a subspace of \mathbb{R}^{n}. Let $x \in \mathbb{R}^{n}$ be any point.

The orthogonal projection of x onto \mathscr{W}, namely \hat{w} is the closest point in \mathscr{W} to x.

$$
\|x-\hat{w}\|<\|x-w\| \text { for all } w \in \mathscr{W}, w \neq \hat{w}
$$

\hat{w} is called the best approximation from \mathscr{W} to x.

Motivation

Let $\mathbb{M}(n)$ be the space of $n \times n$ complex matrices. Let \mathscr{W} be a subspace of $\mathbb{M}(n)$. Let $A \notin \mathscr{W}$. Consider the problem of finding a best approximation from \mathscr{W} to A.
That is, find an element \widehat{W} such that

$$
\min _{W \in \mathscr{W}}\|A-W\|=\|A-\hat{W}\|
$$

A specific question: When is zero a best approximation from \mathscr{W} to A ? That is, when do we have

Suppose \mathscr{W} is the subspace spanned by a single element B.
Then the above problem reduces to

Motivation

Let $\mathbb{M}(n)$ be the space of $n \times n$ complex matrices. Let \mathscr{W} be a subspace of $\mathbb{M}(n)$. Let $A \notin \mathscr{W}$. Consider the problem of finding a best approximation from \mathscr{W} to A. That is, find an element \hat{W} such that

$$
\min _{W \in \mathscr{W}}\|A-W\|=\|A-\hat{W}\| .
$$

A specific question: When is zero a best approximation from \mathscr{W} to A ? That is, when do we have

Suppose \mathscr{W} is the subspace spanned by a single element B.
Then the above problem reduces to

Motivation

Let $\mathbb{M}(n)$ be the space of $n \times n$ complex matrices. Let \mathscr{W} be a subspace of $\mathbb{M}(n)$. Let $A \notin \mathscr{W}$. Consider the problem of finding a best approximation from \mathscr{W} to A.
That is, find an element \hat{W} such that

$$
\min _{W \in \mathscr{W}}\|A-W\|=\|A-\hat{W}\| .
$$

A specific question: When is zero a best approximation from \mathscr{W} to A ? That is, when do we have

$$
\min _{W \in \mathscr{W}}\|A-W\|=\|A\| ?
$$

Suppose \mathscr{W} is the subspace spanned by a single element B.
Then the above problem reduces to

Motivation

Let $\mathbb{M}(n)$ be the space of $n \times n$ complex matrices. Let \mathscr{W} be a subspace of $\mathbb{M}(n)$. Let $A \notin \mathscr{W}$. Consider the problem of finding a best approximation from \mathscr{W} to A.
That is, find an element \hat{W} such that

$$
\min _{W \in \mathscr{W}}\|A-W\|=\|A-\hat{W}\| .
$$

A specific question: When is zero a best approximation from \mathscr{W} to A ? That is, when do we have

$$
\min _{W \in \mathscr{W}}\|A-W\|=\|A\| ?
$$

Suppose \mathscr{W} is the subspace spanned by a single element B. Then the above problem reduces to

$$
\min _{\lambda \in \mathbb{C}}\|A-\lambda B\|=\|A\| .
$$

Definition

A is said to be Birkhoff-James orthogonal to B if

$$
\min _{\lambda \in \mathbb{C}}\|A-\lambda B\|=\|A\|,
$$

that is,

$$
\|A+\lambda B\| \geq\|A\| \text { for all } \lambda \in \mathbb{C}
$$

In general, if \mathscr{X} is a complex normed linear space, then an element x is said to be Birkhoff-James orthogonal to another element y if

If \mathscr{X} is a pre-Hilbert space with inner product $\langle\cdot, \cdot\rangle$, then this

Definition

A is said to be Birkhoff-James orthogonal to B if

$$
\min _{\lambda \in \mathbb{C}}\|A-\lambda B\|=\|A\|,
$$

that is,

$$
\|A+\lambda B\| \geq\|A\| \text { for all } \lambda \in \mathbb{C}
$$

In general, if \mathscr{X} is a complex normed linear space, then an element x is said to be Birkhoff-James orthogonal to another element y if

$$
\|x+\lambda y\| \geq\|x\| \text { for all } \lambda \in \mathbb{C}
$$

If \mathscr{X} is a pre-Hilbert space with inner product $\langle\cdot, \cdot\rangle$, then this definition is equivalent to $\langle x, y\rangle=0$.

Geometric interpretation

Geometric interpretation

Geometric interpretation

$\|x+t y\| \geq\|x\|$ for all $t \in \mathbb{R}$ if and only if x and y are orthogonal.

Birkhoff-James orthogonality

\mathscr{X} real Banach space

$$
x, y \in \mathscr{X}
$$

Observation
Either $\|x+t y\| \geq\|x\|$ for all $t \geq 0$ or $\|x+t y\| \geq\|x\|$ for all $t \leq 0$.
x is Birkhoff-James orthogonal to y if both of them are satisfied.

Properties

- This orthogonality is clearly homogeneous: x orthogonal to $y \Rightarrow \lambda x$ orthogonal to μy for all scalars λ, μ.
- Not symmetric: x orthogonal to $y \nRightarrow y$ orthogonal to x.
- Not additive: x orthogonal to $y, z \nRightarrow x$ orthogonal to $y+z$.

New method

$$
\|x+t y\| \geq\|x\| \text { for all } t \in \mathbb{R}
$$

- Let $f(t)=\|x+t y\|$ mapping \mathbb{R} into \mathbb{R}_{+}.
- To say that $\|x+t y\| \geq\|x\|$ for all $t \in \mathbb{R}$ is to say that f attains its minimum at the point 0 .
- A calculus problem?
- If f were differentiable at x, then a necessary and sufficient condition for this would have been that the derivative $\mathrm{D} f(0)=0$.
- But the norm function may not be differentiable at x.
- However, f is a convex function, that is,

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y) \text { for all } x, y \in \mathscr{X}, 0 \leq \alpha \leq 1
$$

- The tools of convex analysis are available.

Orthogonality in matrices

$\mathbb{M}(n)$: the space of $n \times n$ complex matrices
$\langle A, B\rangle=\operatorname{tr}\left(A^{*} B\right)$
$\|\cdot\|$ is the operator norm, $\|A\|=\sup _{\|x\|=1}\|A x\|$.
Theorem (Bhatia, Šemrl; 1999)
Let $A, B \in \mathbb{M}(n)$. Then $A \perp_{B J} B$ if and only if there exists
$x:\|x\|=1,\|A x\|=\|A\|$ and $\langle A x, B x\rangle=0$.

Importance: It connects the more complicated Birkhoff-James orthogonality in the space $\mathbb{M}(n)$ to the standard orthogonality in the space \mathbb{C}^{n}.

Bhatia-Šemrl Theorem

- Let $f: t \rightarrow\|A+t B\|, A \geq 0$.
- $A \perp_{B J} B$ if and only if f attaines its minimum at 0 .
- f is a convex function but may not be differentiable.

Subdifferential

Definition 1

Let $f: \mathscr{X} \rightarrow \mathbb{R}$ be a convex function. The subdifferential of f at a point $a \in \mathscr{X}$, denoted by $\partial f(a)$, is the set of continuous linear functionals $\varphi \in \mathscr{X}^{*}$ such that

$$
f(y)-f(a) \geq \operatorname{Re} \varphi(y-a) \quad \text { for all } y \in \mathscr{X} .
$$

Examples

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as

$$
f(x)=|x| .
$$

This function is differentiable at all $a \neq 0$ and $\mathrm{D} f(a)=\operatorname{sign}(a)$. At zero, it is not differentiable.

Examples

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as

$$
f(x)=|x| .
$$

This function is differentiable at all $a \neq 0$ and $\mathrm{D} f(a)=\operatorname{sign}(a)$. At zero, it is not differentiable.

Note that for $v \in \mathbb{R}$,

$$
f(y)=|y| \geq f(0)+v \cdot y=v \cdot y
$$

holds for all $y \in \mathbb{R}$ if and only if $|v| \leq 1$.

Examples

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the map defined as

$$
f(x)=\max \left\{0, \frac{x^{2}-1}{2}\right\}
$$

Examples

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the map defined as

$$
f(x)=\max \left\{0, \frac{x^{2}-1}{2}\right\}
$$

Then f is differentiable everywhere except at $x=-1,1$. We have

$$
\partial f(1)=[0,1] \text { and } \partial f(-1)=[-1,0] .
$$

Examples

Let $f: \mathscr{X} \rightarrow \mathbb{R}$ be defined as

$$
f(a)=\|a\|
$$

Then for $a \neq 0$,

$$
\partial f(a)=\left\{\varphi \in \mathscr{X}^{*}: \operatorname{Re} \varphi(a)=\|a\|,\|\varphi\| \leq 1\right\}
$$

and

$$
\partial f(0)=\left\{\varphi \in \mathscr{X}^{*}:\|\varphi\| \leq 1\right\} .
$$

In particular, when $\mathscr{X}=\mathbb{M}(n)$, we get that for $A \neq 0$,

$$
\partial f(A)=\left\{G \in \mathbb{M}(n): \operatorname{Re} \operatorname{tr} G^{*} A=\|A\|,\|G\|_{*} \leq 1\right\}
$$

$\left(\|\cdot\|_{*}\right.$ is the dual norm of $\left.\|\cdot\|\right)$

Examples

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined as

$$
f(a)=\|a\|_{\infty}=\max \left\{\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right\} .
$$

Then for $a \neq 0$,

$$
\partial f(a)=\operatorname{conv}\left\{ \pm e_{i}:\left|a_{i}\right|=\|a\|_{\infty}\right\} .
$$

$$
f(y)-f(a) \geq \operatorname{Re} \varphi(y-a) \text { for all } y \in \mathscr{X} .
$$

Proposition

A function $f: \mathscr{X} \rightarrow \mathbb{R}$ attains its minimum value at $a \in \mathscr{X}$ if and only if $0 \in \partial f(a)$.

In our case,

$$
f(t)=\|A+t B\|
$$

and f attains minimum at 0 . So

$$
0 \in \partial f(0)
$$

Subdifferential calculus

Precomposition with an affine map

Let \mathscr{X}, \mathscr{Y} be any two Banach spaces. Let $g: \mathscr{Y} \rightarrow \mathbb{R}$ be a continuous convex function. Let $S: \mathscr{X} \rightarrow \mathscr{Y}$ be a linear map and let $L: \mathscr{X} \rightarrow \mathscr{Y}$ be the continuous affine map defined by $L(x)=S(x)+y_{0}$, for some $y_{0} \in \mathscr{Y}$. Then

$$
\partial(g \circ L)(a)=S^{*} \partial g(L(a)) \text { for all } a \in \mathscr{X} .
$$

In our case, let $S: t \mapsto t B, \quad L: t \mapsto A+t B$ and

$$
g: X \mapsto\|X\|
$$

And $f(t)=\|A+t B\|$ is the composition of g and L. So

$$
\partial f(0)=S^{*} \partial\|A\|
$$

where $S^{*}(T)=\operatorname{Re} \operatorname{tr} B^{*} T$.

Bhatia-Šemrl Theorem

Watson, 1992

For any $A \in \mathbb{M}(n)$,

$$
\partial\|A\|=\operatorname{conv}\left\{u v^{*}:\|u\|=\|v\|=1, A v=\|A\| u\right\}
$$

If $A \geq 0$, then

$$
\partial\|A\|=\operatorname{conv}\left\{u u^{*}:\|u\|=1, A u=\|A\| u\right\}
$$

Bhatia-Šemrl Theorem

- $0 \in \partial f(0)=S^{*} \partial\|A\|$ if and only if
$0 \in \operatorname{conv}\{\operatorname{Re}\langle u, B u\rangle:\|u\|=1, A u=\|A\| u\}$.
- By Hausdorff-Toeplitz Theorem, $\{\operatorname{Re}\langle u, B u\rangle:\|u\|=1, A u=\|A\| u\}$ is convex.
- $0 \in S^{*} \partial\|A\|$ if and only if $0 \in\{\operatorname{Re}\langle u, B u\rangle:\|u\|=1, A u=\|A\| u\}$.
- There exists $x:\|x\|=1, A x=\|A\| x$ and $\operatorname{Re}\langle A x, B x\rangle=0$.

Application

Distance of A from $\mathbb{C} /$:

$$
\operatorname{dist}(A, \mathbb{C} I)=\min \{\|A-\lambda /\|: \lambda \in \mathbb{C}\}
$$

Variance of A with respect to x :
For $x:\|x\|=1$,

$$
\operatorname{var}_{x}(A)=\|A x\|^{2}-|\langle x, A x\rangle|^{2}
$$

Corollary

Let $A \in \mathbb{M}(n)$. With notations as above, we have

$$
\operatorname{dist}(A, \mathbb{C} /)^{2}=\max _{\|x\|=1} \operatorname{var}_{x}(A)
$$

Orthogonality to a subspace

\mathscr{W} : subspace of $\mathbb{M}(n)$
Consider the problem of finding \hat{W} such that

$$
\min _{W \in \mathscr{W}}\|A-W\|=\|A-\hat{W}\|
$$

Examples

1) Let $\mathscr{W}=\{W: \operatorname{tr} W=0\}$.

Then

$$
\begin{gathered}
\min _{W \in \mathscr{W}}\|A-W\|=\frac{|\operatorname{tr}(A)|}{n} . \\
\hat{W}=A-\frac{\operatorname{tr}(A)}{n} l .
\end{gathered}
$$

2) Let $\mathscr{W}=\left\{W: W=W^{*}\right\}$.

For any A,

$$
\hat{W}=\frac{1}{2}\left(A+A^{*}\right)=\operatorname{Re} A .
$$

Orthogonality to a subspace

When is zero matrix a best approximation to \mathscr{W} ?
A is said to be Birkhoff-James orthogonal to $\mathscr{W}\left(A \perp_{B J} \mathscr{W}\right)$ if

$$
\|A+W\| \geq\|A\| \text { for all } W \in \mathscr{W} .
$$

\mathscr{W}^{\perp} : the orthogonal complement of \mathscr{W}, under the usual Hilbert space orthogonality in $\mathbb{M}(n)$ with the inner product $\langle A, B\rangle=\operatorname{tr}\left(A^{*} B\right)$.

Bhatia-Šemrl theorem: $A \perp_{B J} \mathbb{C} B$ if and only if there exists a positive semidefinite matrix P of rank one such that $\operatorname{tr} P=1, \operatorname{tr} A^{*} A P=\|A\|^{2}$ and $A P \in(\mathbb{C} B)^{\perp}$.
$\mathbb{D}(n ; \mathbb{R})$: the space of real diagonal $n \times n$ matrices
A matrix A is said to be minimal if $\|A+D\| \geq\|A\|$ for all $D \in \mathbb{D}(n ; \mathbb{R})$, i.e. A is orthogonal to the subspace $\mathbb{D}(n ; \mathbb{R})$.

Theorem (Andruchow, Larotonda, Recht, Varela; 2012)

A Hermitian matrix A is minimal if and only if there exists a $P \geq 0$ such that

$$
A^{2} P=\|A\|^{2} P
$$

and
all the diagonal elements of $A P$ are zero.

Question: Similar characterizations for other subspaces?

Orthogonality to a subspace

Theorem

Let $A \in \mathbb{M}(n)$ and let \mathscr{W} be a subspace of $\mathbb{M}(n)$. Then $A \perp_{B J} \mathscr{W}$ if and only if there exists $P \geq 0, \operatorname{tr} P=1$, such that

$$
A^{*} A P=\|A\|^{2} P
$$

and

$$
A P \in \mathscr{W}^{\perp}
$$

Moreover, we can choose P such that rank $P \leq m(A)$, where $m(A)$ is the multiplicity of the maximum singular value $\|A\|$ of A.

Orthogonality to a subspace

$m(A)$ is the best possible upper bound on rank P.
Consider $\mathscr{W}=\{X: \operatorname{tr} X=0\}$.
Then $\left\{A: A \perp_{B J} \mathscr{W}\right\}=\mathscr{W}^{\perp}=\mathbb{C}$.
If $A \perp_{B J} \mathscr{W}$, then it has to be of the form $A=\lambda I$, for some $\lambda \in \mathbb{C}$.
When $A \neq 0$ then $m(A)=n$.
Let P be any density matrix satisfying $A P \in \mathscr{W}^{\perp}$. Then $A P=\mu l$, for some $\mu \in \mathbb{C}, \mu \neq 0$.

If P also satisfies $A^{*} A P=\|A\|^{2} P$, then we get $P=\frac{\mu}{\lambda} l$. Hence rank $P=n=m(A)$.

Orthogonality to a subspace

Observation: In general, the set $\left\{A: A \perp_{B J} \mathscr{W}\right\}$ need not be a subspace.

Consider the subspace $\mathscr{W}=\mathbb{C}$ of $\mathbb{M}(3)$. Let

$$
A_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \text { and } A_{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] .
$$

Then $A_{1}, A_{2} \perp_{B J} \mathscr{W}$.
Then $A_{1}+A_{2}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right],\left\|A_{1}+A_{2}\right\|=2$.
But $\left\|A_{1}+A_{2}-\frac{1}{2} I\right\|=\frac{3}{2}<\left\|A_{1}+A_{2}\right\|$. Hence $A_{1}+A_{2} \not \chi_{B J} \mathscr{W}$.

Distance to any subalgebra of $\mathbb{M}(n)$

$\operatorname{dist}(A, \mathscr{W})$: distance of a matrix A from the subspace \mathscr{W}

$$
\operatorname{dist}(A, \mathscr{W})=\min \{\|A-W\|: W \in \mathscr{W}\}
$$

We have seen that

$$
\operatorname{dist}(A, \mathbb{C} /)^{2}=\max _{\|x\|=1} \operatorname{var}_{x}(A)
$$

This is equivalent to saying that
$\operatorname{dist}(A, \mathbb{C} I)^{2}=$

$$
\max \left\{\operatorname{tr}\left(A^{*} A P\right)-|\operatorname{tr}(A P)|^{2}: P \geq 0, \operatorname{tr} P=1, \text { rank } P=1\right\}
$$

Let \mathscr{B} be any C^{*} subalgebra of $\mathbb{M}(n)$.
Similar distance formula?
(This question has been raised by Rieffel)

Distance to a subalgebra of $\mathbb{M}(n)$

$\mathcal{C}_{\mathscr{B}}: \mathbb{M}(n) \rightarrow \mathscr{B}$ denote the projection of $\mathbb{M}(n)$ onto \mathscr{B}.

Theorem

For any $A \in \mathbb{M}(n)$

$$
\begin{array}{r}
\operatorname{dist}(A, \mathscr{B})^{2}=\max \left\{\operatorname{tr}\left(A^{*} A P-\mathcal{C}_{\mathscr{B}}(A P)^{*} \mathcal{C}_{\mathscr{B}}(A P) \mathcal{C}_{\mathscr{B}}(P)^{-1}\right)\right. \\
: P \geq 0, \operatorname{tr} P=1\},
\end{array}
$$

where $\mathcal{C}_{\mathscr{A}}(P)^{-1}$ denotes the Moore-Penrose inverse of $\mathcal{C}_{\mathscr{B}}(P)$.
The maximum on the right hand side can be restricted to rank $P \leq m(A)$.

The quantity on the right also enjoys the property of being translation invariant.

REFERENCES:

(1) T. Bhattacharyya, P. Grover, Characterization of Birkhoff-James orthogonality, J. Math. Anal. Appl. 407 (2013) 350-358.
(2) P. Grover, Orthogonality to matrix subspaces, and a distance formula, Linear Algebra Appl. 445 (2014) 280-288.
(3) P. Grover, Some problems in differential and subdifferential calculus of matrices, Ph. D. thesis, Indian Statistical Institute, 2014.

THANK YOU

