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Grand Lebesgue spaces

Iwaniec and Sbordone [6], 1992.

For p > 1 and I = (0,1), we define the grand Lebesgue spaces
Lp)(I) to be the collection of measurable functions f for which

‖f‖Lp)(I) := sup
0<ε<p−1

(
ε

∫ 1

0
|f (x)|p−ε dx

)1/p−ε

<∞.

The spaces are rearrangement invariant Banach function
spaces [2].

Note. Lp ⊆ Lp) ⊆ Lp−ε for all 0 < ε ≤ p − 1, where Lp

denote Lebesgue spaces.
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Weighted grand Lebesgue spaces

Weight. Denoted by w , measurable, positive and finite
a.e. functions.

Fiorenza, Gupta and Jain (2008, [4]).

Weighted grand Lebesgue spaces (WGLS) are defined to be to
be the collection of measurable functions f for which

‖f‖
Lp)

w (I)
:= sup

0<ε<p−1

(
ε

∫ 1

0
|f (x)|p−ε w(x) dx

)1/p−ε

<∞.

The spaces Lp)
w (I) are Banach function spaces.

The spaces Lp)
w (I) are not rearrangement invariant Banach

function spaces in general, except when w = constant .
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WGLS’s are different

Lp(I) := {f measurable :
(∫ 1

0 |f (x)|p dx
)1/p

<∞.}

Lp
w (I) := {f measurable :

(∫ 1
0 |f (x)|pw(x) dx

)1/p
<∞.}

f ∈ Lp
w (I)⇒ fw1/p ∈ Lp(I).

But it is not so for WGLS’s.

For example. Take a weight w(x) = xα, α > 0 and set
f (x) = xβ, β > −α− 1. Then one may easily check that
f ∈ Lp)

w (I). But fw1/p /∈ Lp)(I), since (fw1/p)p−ε is not
integrable in (0,1).
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Hardy’s Inequality (initial form)

In 1920, Hardy [5] gave the following inequality∫ ∞
0

[Hf (x)]px−pdx ≤ C
∫ ∞

0
f p(x)dx , f ≥ 0, p > 1, (1)

where Hf (x) :=
∫ x

0 f (t)dt , commonly known as the Hardy
operator.

Landau [9]

The sharp constant:
(

p
p − 1

)p
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Hardy’s Inequality (modern form)

The modern form of Hardy’s inequality reads as:(∫ ∞
0

[Hf (x)]qu(x)dx
)1/q

≤ C
(∫ ∞

0
f p(x)v(x)dx

)1/p

, f ≥ 0 (2)

where u, v are the weight functions.

H : Lp
v (0,∞)→ Lq

u(0,∞)
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Hardy’s inequality for 0 ≤ f ↓ functions

Objective to study the Hardy’s inequality for non-increasing
functions?

Lorentz spaces. (1960’s)
For 0 < p <∞ and w a weight function defined on (0,∞),
Lorentz spaces are the spaces defined as -

Λp,w := {f measurable : ‖f‖p,w :=

(∫ ∞
0

f ∗(t)pw(t)dt
)1/p

<∞, }

where f ∗ denotes the decreasing rearrangement of |f |
defined by

f ∗(t) = inf{λ > 0 : µ({x > 0 : |f (x)| > λ}) ≤ t}.

The functional ‖f‖p,w is a norm on Λp,w if and only if w is
decreasing and p ≥ 1.
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A requirement

An investigation of the structure of the Lorentz spaces Λp,w

required the boundedness of the Hardy averaging

operator: f ∗∗(t) = 1
t

∫ t
0 f ∗(s)ds in these spaces. I.e., the

study of the inequality(∫ ∞
0

(
1
t

∫ t

0
f ∗(s)ds

)q

w(t)dt

)1/q

≤ C
(∫ ∞

0
f ∗p(t)w(t)dt

)1/p

, (3)

for non-increasing functions f ∗.
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A finding

We define Hardy maximal function as

Mf (x) := sup
x∈J

1
|J|

∫
J
|f (y)|dy , x ∈ [a,b], J ⊆ [a,b].

For this operator we have the equivalence

(Mf )∗(t) ≈ 1
t

∫ t

0
f ∗(s)ds, (4)

where the estimate from above is due to Riesz-Wiener and the
Stein-Herz gave the estimate from below.
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An equivalent study

From (3) and (4) above it is just evident that: to prove the

boundedness M : Λp,v → Λp,u is equivalent to prove that the

weighted Hardy inequality(∫ ∞
0

(
1
t

∫ t

0
f (s)ds

)q

u(t)dt

)1/q

≤ C
(∫ ∞

0
f p(t)v(t)dt

)1/p

, (5)

holds for all positive non-increasing functions f on (0,∞).
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Enough to focus on the functions: 0 ≤ f ↓

Arino and Muckenhoupt- 1990.

For 1 ≤ q = p <∞ and w(x) ≥ 0, the inequality (5) holds for all
non-negative non-increasing functions f on (0,∞) there is a
constant C such that for every r > 0, the weight w satisfies the
condition ∫ ∞

r

( r
x

)p
dx ≤ C

∫ r

0
w(x) dx .

This class of weights was given a formal nomenclature by
Boyd, and is now popularly known in literature as the Bp−class.

Example. Weight xα ∈ Bp ⇔ −1 < α < p − 1.
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Hardy averaging operator studied on WGLS’s

Meskhi in 2011, studied inequality (5) on WGLS’s and proved
that: for 1 < p <∞, the inequality

‖Af‖
Lp)

w (I)
≤ C‖f‖

Lp)
w (I)

holds for all 0 ≤ f ↓ if and only if w ∈ Bp.

The equivalence of boundedness of Hardy averaging

operator on weighted Lebesgue spaces and weighted

grand Lebesgue spaces.
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Our contribution / mentioning the operator studied

We have studied the boundedness of a very general operator

on weighted grand Lebesgue spaces - Lp)
w (I), from which a

number of results available in the literature drops out as special

cases. The operator is -

Tψf (x) :=

∫ x

0
ψ(x , y)f (y) dy ,

ψ being a function from R+ × R+ to R+.

The operator Tψ was studied on WLS’s by Lai ([8], 1993),
for monotone functions.
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Our contribution/defining a weight class

For 0 < p <∞, we denote by Bb
ψ, p, the class of weights w for

which the inequality∫ b

r
Ψ(x , r)pw(x) dx ≤ C1

∫ r

0
w(x) dx , 0 < r < b,

holds for some constant C1 > 0, where Ψ(x , r) =
∫ r

0 ψ(x , y) dy
satisfies the following:

P1 Ψ(x , r) ≤ α Ψ(x , t)Ψ(t , r) for some α > 0 and
all 0 < r ≤ t ≤ x ;

P2 f ↓ ⇒ Tψf ↓; and

P3 Ψ(x , x) ≤ D, x ∈ (0,b) for some constant D ≥ 1.
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Our contribution/One of our Results

Theorem
Let 1 < p <∞, and P1, P2, P3 hold. Then the inequality

‖Tψf‖
Lp)

w (I)
≤ C ‖f‖

Lp)
w (I)

(6)

holds for all non-negative f ↓ if and only if w ∈ B1
ψ, p.

In fact, what we have proven is a little more, that:

for non-increasing functions, boundedness of the operator

Tψ on WGLS’s is equivalent to its boundedness on WLS’s.
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Deduction 1

Corollary
Let 1 < p <∞ and φ be non-negative locally integrable and ↓ .
Then the inequality

‖Sφf‖
Lp)

w (I)
≤ c ‖f‖

Lp)
w (I)

holds for all f ↓ if and only if∫ 1

r

(
Φ(r)

Φ(x)

)p

w(x) dx ≤ c
∫ r

0
w(x) dx , 0 < r < 1, (7)

where Sφ := 1
Φ(x)

∫ x
0 f (t)φ(t)dt , and Φ(x) :=

∫ x
0 φ(t)dt .

Carro and Soria [3] studied its boundedness on
Lp

w -spaces for 0 ≤ f ↓ in 1993. Hint: Take ψ(x , y) ≡ φ(y)
Φ(x) .
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Deduction 2

Corollary
Let 1 < q <∞ and consider the operator

Aqf (x) :=
1

x1/q

∫ x

0

f (t)
t1/q′ dt .

For 1 < p <∞, the inequality

‖Aqf‖
Lp)

w (I)
≤ c ‖f‖

Lp)
w (I)

holds for all f ↓ if and only if∫ 1

r

( r
x

)p/q
w(x) dx ≤ c

∫ r

0
w(x) dx , 0 < r < 1. (8)
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Deduction 2-3

The boundedness of the above operator was studied by

Neugebauer [11] in 1992. Hint: Take φ(t) = 1
qt1/q′ in the

previous Corollary.

On taking ψ(t , y) = 1
t in the above Theorem, it get

reduced to the result for the Hardy averaging operator ([1]).
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