Regularity of solutions of hydrodynamical equations

(joint work with S.S. Ray et al, ICTS-TIFR)

V. Divya
Airbus Prize Post-doctoral fellow
International Centre for Theoretical Sciences
Tata Institute of Fundamental Research - Bangalore
(Ph.D., University of Genoa, Italy)

Indian Women and Mathematics 2015, University of Delhi - April 2, 2015

Regularity of solutions of hydrodynamical equations: Problem motivation

Applications ranging from
daily life - "what happens when cream is stirred in a cup of coffee ?"
to
serious technological concerns - "if two (or more) aircrafts were to land one behind the other, what is the optimum distance between them to be maintained so that they don't negatively "Influence" each other ?"

Question: Dependence of energy dissipation on viscosity ??

Regularity of solutions of hydrodynamical equations: Clay Institute's Millennium-prize Problem

- RESEARCH AIM: Prove/disprove smoothness and/or periodicity of solutions to hydrodynamical equations (in particular, Navier-Stokes) under smooth and/or periodic initial and boundary conditions.

APPROACHES

PURE / MATHEMATICAL

APPLIED / COMPUTATIONAL

Statistical properties of turbulence from numerical simulations etc. -

- Kelvin
- Reynolds
- Kolmogorov (1941)
- von Neumann (1949)
- Kraichnan $(1961,1965)$
- Frisch, Benzi, Bec, Succi (2k's)

Outline

- Mathematical formulation of dynamical equations
- Reduction to simpler models
- Time evolution of solutions
- Computational methodology
- Key results
- Burger's equation
- Summary and future extensions
- Mathematical formulation of dynamical equations
- Reduction to simpler models
- Time evolution of solutions
- Computational methodology
- Key results
- Burger's equation
- Summary and future extensions

Mathematical formulation

Reduction to simpler models

Navier-Stokes' equations: $\partial_{t} v+v \cdot \nabla v=-\nabla p+\nu \nabla^{2} v$, (incompressible)
 $$
\nabla \cdot v=0
$$

Euler equations: (incompressible)

$$
\begin{aligned}
\partial_{t} v+v \cdot \nabla v & =-\nabla p+\nu \nabla^{2} v \\
\nabla \cdot v & =0
\end{aligned}
$$

Inviscid Burger's equation:
(1-D)

$$
\partial_{t} v+v \cdot \nabla v=-\nabla p
$$

NOTE: The inviscid Burger's equation (here, being one-dimensional) is necessarily compressible, whereas the other two are not. Hence Euler and N-S can not admit shocks as their solutions!

Time evolution of solutions
Burger's/Euler's equations
Real space

Fourier (spectral) space

- Mathematical formulation of dynamical equations
- Reduction to simpler models
- Time evolution of solutions
- Computational methodology
- Key results
- Burger's equation
- Summary and future extensions
- Mathematical formulation of dynamical equations
- Reduction to simpler models
- Time evolution of solutions
- Computational methodology
- Key results
- Burger's equation
- Summary and future extensions

Key results

Burger's equation

Key results

Burger's equation (contd..)

- Mathematical formulation of dynamical equations
- Reduction to simpler models
- Time evolution of solutions
- Computational methodology
- Key results
- Burger's equation
- Summary and future extensions

Summary and future extensions

- For the Euler equation, a finite-time blowup can exist only if the complex singularity hits the real axis sufficiently fast at the singularity time.
- Numerical results consistent with the possibility of a singularity.
- Higher-resolution studies needed to extend the time interval on which well-resolved power law behaviour happens.

Thank you for your attention!

Questions?

