

Regularity of solutions of hydrodynamical equations

(joint work with S.S. Ray et al, ICTS-TIFR)

V. Divya

Airbus Prize Post-doctoral fellow
International Centre for Theoretical Sciences
Tata Institute of Fundamental Research - Bangalore
(Ph.D., University of Genoa, Italy)

Regularity of solutions of hydrodynamical equations: *Problem motivation*

Applications ranging from

daily life - "what happens when cream is stirred in a cup of coffee?"

<u>to</u>

serious technological concerns – "if two (or more) aircrafts were to land one behind the other, what is the optimum distance between them to be maintained so that they don't negatively "Influence" each other?"

Question: Dependence of energy dissipation on viscosity ??

Regularity of solutions of hydrodynamical equations: Clay Institute's Millennium-prize Problem

 RESEARCH AIM: Prove/disprove smoothness and/or periodicity of solutions to hydrodynamical equations (in particular, Navier-Stokes) under smooth and/or periodic initial and boundary conditions.

Outline

- Mathematical formulation of dynamical equations
 - Reduction to simpler models
 - Time evolution of solutions
- Computational methodology
- Key results
 - Burger's equation
- Summary and future extensions

- Mathematical formulation of dynamical equations
 - Reduction to simpler models
 - Time evolution of solutions
- Computational methodology
- Key results
 - Burger's equation
- Summary and future extensions

Mathematical formulation

Reduction to simpler models

(incompressible)

Navier-Stokes' equations:
$$\partial_t v + v \cdot \nabla v = -\nabla p + \nu \nabla^2 v,$$
 (incompressible) $\nabla \cdot v = 0$

Euler equations: (incompressible)

$$\partial_t \, v + v \cdot
abla v = -
abla p +
u
abla^2 v,$$
 $abla \cdot v = 0$

Inviscid Burger's equation: (1-D)

$$\partial_t \, v + v \cdot
abla v = -
abla p$$

NOTE: The inviscid Burger's equation (here, being one-dimensional) is necessarily compressible, whereas the other two are not. Hence Euler and N-S can not admit shocks as their solutions!

Time evolution of solutions

Burger's/Euler's equations

Real space

Fourier (spectral) space

- Mathematical formulation of dynamical equations
 - Reduction to simpler models
 - Time evolution of solutions
- Computational methodology
- Key results
 - Burger's equation
- Summary and future extensions

- Mathematical formulation of dynamical equations
 - Reduction to simpler models
 - Time evolution of solutions
- Computational methodology
- Key results
 - Burger's equation
- Summary and future extensions

Key results

Burger's equation

Key results

Burger's equation (contd..)

- Mathematical formulation of dynamical equations
 - Reduction to simpler models
 - Time evolution of solutions
- Computational methodology
- Key results
 - Burger's equation
- Summary and future extensions

Summary and future extensions

- For the Euler equation, a finite-time blowup can exist only if the complex singularity hits the real axis sufficiently fast at the singularity time.
- Numerical results consistent with the possibility of a singularity.
- Higher-resolution studies needed to extend the time interval on which well-resolved power law behaviour happens.

Thank you for your attention !

Questions?