Grothendieck's tensor norms

Vandana
Shivaji College, University of Delhi, India

April, 2015

Overview

- Grothendieck's tensor norms
- Operator spaces
- Tensor products of Operator spaces
- Schur tensor product

Grothendieck's tensor norms

A Banach space is a complete normed space. For Banach spaces X and $Y, X \otimes Y=\operatorname{span}\{x \otimes y: x \in X, y \in Y\}$, where $x \otimes y$ is the functional on $B\left(X^{*} \times Y^{*}, \mathbb{C}\right)$ given by $x \otimes y(f, g)=f(x) g(y)$ for $f \in X^{*}$ and $g \in Y^{*}$.

- For a pair of arbitrary Banach spaces X and Y, the norm on $X \otimes Y$ induced by the embedding $X \otimes Y \rightarrow B\left(X^{*} \times Y^{*}, \mathbb{C}\right)$ is known as Banach space injective tensor norm. That is, for $u \in X \otimes Y$, the Banach space injective tensor norm is defined to be

$$
\|u\|_{\lambda}=\sup \left\{\left|\sum_{i=1}^{n} f\left(x_{i}\right) g\left(y_{i}\right)\right|: f \in X_{1}^{*}, g \in Y_{1}^{*}\right\} .
$$

Grothendieck's tensor norms

Question is
How can we norm on $X \otimes Y$?

- $\|x \otimes y\|_{\alpha} \leq\|x\|\|y\|$, then, for $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$, by triangle's inequality it follows that $\|u\|_{\alpha} \leq \sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|$. Since this holds for every representation of u, so we have $\|u\|_{\alpha} \leq \inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|\right\}$.
- For a pair of arbitrary Banach spaces X and Y and u an element in the algebraic tensor product $X \otimes Y$, the Banach space projective tensor norm is defined to be

$$
\|u\|_{\gamma}=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|: u=\sum_{i=1}^{n} x_{i} \otimes y_{i}, n \in \mathbb{N}\right\}
$$

$X \otimes^{\gamma} Y$ will denote the completion of $X \otimes Y$ with respect to this norm.

Tensor Products: Properties

For Banach spaces $X_{1}, X_{2}, \tilde{X}_{1}, \tilde{X}_{2}$ and X_{3},

- projective, For the quotient maps $Q: X_{1} \rightarrow \tilde{X}_{1}$ and $R: X_{2} \rightarrow \tilde{X}_{2}$, the corresponding map $Q \otimes R: X_{1} \otimes X_{2} \rightarrow \tilde{X}_{1} \otimes \tilde{X}_{2}$ extends to a quotient map $Q \otimes^{\gamma} R: X_{1} \otimes^{\gamma} X_{2} \rightarrow \tilde{X}_{1} \otimes^{\gamma} \tilde{X}_{2}$.
- commutative, $X_{1} \otimes^{\gamma} X_{2}$ is isometrically isomorphic to $X_{2} \otimes^{\gamma} X_{1}$;
- associative, $X_{1} \otimes^{\gamma}\left(X_{2} \otimes^{\gamma} X_{3}\right)$ is isometrically isomorphic to $\left(X_{1} \otimes^{\gamma} X_{2}\right) \otimes^{\gamma} X_{3}$;
- If $\phi_{i}: X_{i} \rightarrow Y_{i}, i=1,2$, are bounded maps between the Banach spaces, then $\phi_{1} \otimes \phi_{2}: X_{1} \otimes X_{2} \rightarrow Y_{1} \otimes Y_{2}$ extends to a bounded $\operatorname{map} \phi_{1} \otimes^{\gamma} \phi_{2}: X_{1} \otimes^{\gamma} X_{2} \rightarrow Y_{1} \otimes^{\gamma} Y_{2}$ with $\left\|\phi_{1} \otimes^{\gamma} \phi_{2}\right\|=\left\|\phi_{1}\right\|\left\|\phi_{2}\right\| ;$
- In general, Banach space projective tensor product does not respect subspaces, that is, if Y_{1} is a subspace of X_{1}, then $Y_{1} \otimes^{\gamma} X_{2}$ is not, in general, a subspace of $X_{1} \otimes^{\gamma} X_{2}$. However, it does for closed *-subalgebras of C^{*}-algebras. Also, for Banach spaces X and Y, $X \otimes^{\gamma} Y$ is a closed subspace of $X^{* *} \otimes^{\gamma} Y^{* *}$.

The key property of this tensor product is that it linearizes bounded bilinear maps just as the algebraic tensor product linearizes bilinear mappings.

- Let X, Y and Z be Banach spaces. Then there exists a natural isometric isomorphism $B(X \times Y, Z) \cong B\left(X \otimes^{\gamma} Y, Z\right)$ under which any element $B \in B(X \times Y, Z)$ is mapped to the element \tilde{B} of $B\left(X \otimes^{\gamma} Y, Z\right)$ given by $\tilde{B}(x \otimes y)=B(x, y)(x \in X, y \in Y)$.
- In particular, $\left(X \otimes^{\gamma} Y\right)^{*}=B(X \times Y, \mathbb{C})$.
- For Banach algebras A and $B, A \otimes^{\gamma} B$ is a Banach algebra,
- It is commutative if and only if both A and B are.
- If A and B are Banach *-algebras, then $A \otimes^{\gamma} B$ is a Banach *-algebra under the natural involution $(a \otimes b)^{*}=a^{*} \otimes b^{*}$ for $a \in A$ and $b \in B$.

For Banach spaces $X_{1}, X_{2}, Y_{1}, Y_{2}$ and X_{3},

- If $u_{i}: X_{i} \rightarrow Y_{i}$ are isometries for $i=1,2$ then the corresponding map $u_{1} \otimes u_{2}: X_{1} \otimes^{\lambda} X_{2} \rightarrow Y_{1} \otimes^{\lambda} Y_{2}$ is an isometry too.
- $X_{1} \otimes^{\lambda} X_{2}$ is isometrically isomorphic to $X_{2} \otimes^{\lambda} X_{1}$;
- $X_{1} \otimes^{\lambda}\left(X_{2} \otimes^{\lambda} X_{3}\right)$ is isometrically isomorphic to $\left(X_{1} \otimes^{\lambda} X_{2}\right) \otimes^{\lambda} X_{3}$;
- If $\phi_{i}: X_{i} \rightarrow Y_{i}, i=1,2$, are bounded maps between the Banach spaces, then $\phi_{1} \otimes \phi_{2}: X_{1} \otimes X_{2} \rightarrow Y_{1} \otimes Y_{2}$ extends to a bounded $\operatorname{map} \phi_{1} \otimes^{\lambda} \phi_{2}: X_{1} \otimes^{\lambda} X_{2} \rightarrow Y_{1} \otimes^{\lambda} Y_{2}$ with $\left\|\phi_{1} \otimes^{\lambda} \phi_{2}\right\|=\left\|\phi_{1}\right\|\left\|\phi_{2}\right\| ;$
- In general, Banach space injective tensor product does not respect quotient.
- For Banach algebras A and $B, A \otimes^{\lambda} B$ is not a Banach algebra in general.
- Blecher showed that if A and B are unital C^{*}-algebras then $\|\cdot\|_{\lambda}$ is submultiplicative on $A \otimes B$ if and only if A or B is commutative.

Introduction to Operator Spaces

- An (concrete) operator space V is a closed subspace of $\mathcal{B}(H)$ together with the natural norms on $M_{n}(V)$ inherited from $M_{n}(\mathcal{B}(H))=\mathcal{B}\left(H^{n}\right)$.
- A normed space V with a sequence of norms

$$
\|\cdot\|_{n}: M_{n}(V) \rightarrow[0, \infty), \quad n \in \mathbb{N}
$$

is said to be an (abstract) operator space if:
(i) $\|v \oplus w\|_{n+m}=\max \left\{\|v\|_{n},\|w\|_{m}\right\}$ for all $v \in M_{n}(V), w \in M_{m}(V)$, where $v \oplus w$ denotes the matrix $\left(\begin{array}{cc}v & 0 \\ 0 & w\end{array}\right) \in M_{n+m}(V)$.
(ii) $\|\alpha v \beta\|_{m} \leq\|\alpha\|\|v\|_{n}\|\beta\|$, for all $\alpha \in \mathbb{M}_{m, n}, \beta \in \mathbb{M}_{n, m}, v \in M_{n}(V)$.

Operator Spaces: Morphisms

- An operator $\phi: V \rightarrow W$ between operator spaces V and W is said to be completely bounded (abbreviated as c.b.) if

$$
\|\phi\|_{c b}:=\sup \left\{\left\|\phi_{n}\right\|: n \in \mathbb{N}\right\}<\infty
$$

where $\phi_{n}: M_{n}(V) \rightarrow M_{n}(W)$ is defined by

$$
\phi_{n}\left(\left(x_{i j}\right)\right)=\left(\phi\left(x_{i j}\right)\right) \text { for all }\left(x_{i j}\right) \in M_{n}(V) .
$$

The set of all completely bounded maps from V into W is denoted by $C B(V, W)$.

- Two operator spaces V and W are said to be completely isometrically isomorphic if there exists a completely bounded isometry $\phi: V \rightarrow W$ whose inverse is also completely bounded.

Operator Spaces

Ruan(1988)

If V is an abstract operator space, then V is completely isometrically isomorphic to a closed linear subspace of $\mathcal{B}(H)$ for some Hilbert space H.

Introduction to Operator Space: Examples

- By Gelfand-Naimark theorem, every C^{*}-algebra is an operator space.
- For Hilbert spaces H and $K, \mathcal{B}(H, K)$ is an operator space by the embedding $\mathcal{B}(H, K) \hookrightarrow \mathcal{B}(H \oplus K)$. The matrix norms are given by $M_{n}(\mathcal{B}(H, K)) \cong \mathcal{B}\left(H^{n}, K^{n}\right)$.
- Every Banach space X possess a structure of operator space. To see this, consider $\Gamma=X_{1}^{*}$, which is compact in the w^{*}-topology by Alogalu Theorem, so that $C(\Gamma) \subseteq \mathcal{B}\left(\ell_{2}(\Gamma)\right)$ is a C^{*}-algebra. The isometric embedding $X \hookrightarrow C(\Gamma)$ via $x \rightarrow f_{x}$, where $f_{x}(g):=g(x)$ for $g \in \Gamma$, equips X with an operator space structure.

Quantum tensor product-Tensor Products of operator

spaces

For operator spaces V and W and $V \otimes W$ their algebraic tensor product. Assumptions:

- $\|\cdot\|_{n}$ on $M_{n}(V \otimes W)$ satisfying Ruan's Theorem,
- $\|\cdot\|_{n}$ on $M_{n}(V \otimes W)$ are subcross matrix norms, where an operator space matrix norm $\|\cdot\|_{\mu}$ on $V \otimes W$ is called a subcross matrix norm if $\|v \otimes w\|_{\mu} \leq\|v\|\|w\|$ for all $v \in M_{p}(V)$ and $w \in M_{q}(W)$, $p, q \in \mathbb{N}$; if in addition, $\|v \otimes w\|_{\mu}=\|v\|\|w\|$, then $\|\cdot\|_{\mu}$ is called a cross matrix norm on $V \otimes W$.
- For operator spaces V and W, the operator space projective tensor product denoted by $V \widehat{\otimes} W$, is the completion of the algebraic tensor product $V \otimes W$ under the norm

$$
\|u\|_{\wedge}=\inf \{\|\alpha\|\|v\|\|w\|\|\beta\|: u=\alpha(v \otimes w) \beta\}, u \in M_{n}(V \otimes W)
$$

where infimum runs over arbitrary decompositions with $v \in M_{p}(V)$, $w \in M_{q}(W), \alpha \in M_{n, p q}, \beta \in M_{p q, n}$ and $p, q \in \mathbb{N}$ arbitrary.

Quantum tensor product-Tensor Products of operator

spaces

The analogy of $\widehat{\otimes}$ and \otimes^{γ} is not completely transparent from the definition; the following universal properties of $\widehat{\otimes}$ confirm the parallelism.

Theorem

[Effros-Ruan and Blecher-Paulsen] If V, W and Z are operator spaces, then there are natural completely isometric identifications:

$$
C B(V \widehat{\otimes} W, Z) \stackrel{c b}{\cong} J C B(V \times W, Z) .
$$

In particular, if $Z=\mathbb{C},(V \widehat{\otimes} W)^{*} \stackrel{c b}{\cong} J C B(V \times W, \mathbb{C})$.
where a bilinear map $u: V \times W \rightarrow Z$ is said to be jointly completely bounded (in short, j.c.b.) if the associated maps
$u_{n}: M_{n}(V) \times M_{n}(W) \rightarrow M_{n^{2}}(Z)$ given by

$$
u_{n}\left(\left(v_{i j}\right),\left(w_{k l}\right)\right)=\left(u\left(v_{i j}, w_{k l}\right)\right), n \in \mathbb{N}
$$

are uniformly bounded, and in this case we denote $\|u\|_{j c b}=\sup \left\|u_{n}\right\|$.

Quantum tensor Products

- Given operator spaces $X \subseteq B(H)$ and $Y \subseteq B(K)$, the norm induced on $X \otimes Y$ via the inclusion $X \otimes Y \subseteq B\left(H \otimes_{2} K\right)$ is known as the operator space injective tensor norm.
- For $u \in M_{n}(X \otimes Y)$, the Haagerup tensor norm is defined as

$$
\|u\|_{h}=\inf \left\{\|v\|\|w\|: u=v \odot w, v \in M_{n, p}(X), w \in M_{p, n}(Y), p \in \mathbb{N}\right\},
$$

where $v \odot w=\left(\sum_{k=1}^{p} v_{i k} \otimes w_{k j}\right)_{i j}$.

- For C^{*}-algebras A and B, the Haagerup norm of an element $u \in A \otimes B$ takes a simpler and convenient form given by

$$
\|u\|_{h}=\inf \left\{\left\|\Sigma_{i} a_{i} a_{i}^{*}\right\|^{1 / 2}\left\|\Sigma_{i} b_{i}^{*} b_{i}\right\|^{1 / 2}: u=\Sigma_{i=1}^{n} a_{i} \otimes b_{i}, n \in \mathbb{N}\right\} .
$$

Like the projective tensor product of Banach spaces and the operator space projective tensor product of operator spaces, the Haagerup tensor norm is naturally associated with the completely bounded bilinear maps through the following identifications:

$$
C B(V \times W, Z) \stackrel{c b}{\cong} C B\left(V \otimes^{h} W, Z\right) \text { and } C B(V \times W, \mathbb{C}) \stackrel{c b}{\cong}\left(V \otimes^{h} W\right)^{*}
$$

By a completely bounded (in short, c.b.) bilinear map, we mean a bilinear map $u: V \times W \rightarrow Z$ for which the associated maps $u_{n}: M_{n}(V) \times M_{n}(W) \rightarrow M_{n}(Z)$ given by

$$
u_{n}\left(\left(v_{i j}\right),\left(w_{k l}\right)\right)=\left(\sum_{k} u\left(v_{i k}, w_{k j}\right)\right), n \in \mathbb{N}
$$

are uniformly bounded, and in this case we denote $\|u\|_{c b}=\sup _{n}\left\|u_{n}\right\|$.

For operator spaces V_{1}, V_{2} and V_{3}, the product $\widehat{\otimes}$ is

- commutative, that is, $V_{1} \widehat{\otimes} V_{2} \stackrel{c b}{=} V_{2} \widehat{\otimes} V_{1}$;
- associative, that is, $V_{1} \widehat{\otimes}\left(V_{2} \widehat{\otimes} V_{3}\right) \stackrel{c b}{=}\left(V_{1} \widehat{\otimes} V_{2}\right) \widehat{\otimes} V_{3}$;
- functorial, that is, if $\phi_{i}: V_{i} \rightarrow W_{i}, i=1,2$, are completely bounded maps between the operator spaces, then $\phi_{1} \otimes \phi_{2}: V_{1} \otimes V_{2} \rightarrow W_{1} \otimes W_{2}$ extends to a completely bounded $\operatorname{map} \phi_{1} \widehat{\otimes} \phi_{2}: V_{1} \widehat{\otimes} V_{2} \rightarrow W_{1} \widehat{\otimes} W_{2}$ with $\left\|\phi_{1} \widehat{\otimes} \phi_{2}\right\|_{\text {cb }} \leq\left\|\phi_{1}\right\|_{\text {cb }}\left\|\phi_{2}\right\|_{\text {cb }}$;
- projective, that is, for closed subspaces $W_{i} \subseteq V_{i}, i=1,2$, the tensor map $V_{1} \otimes V_{2} \rightarrow\left(V_{1} / W_{1}\right) \otimes\left(V_{2} / W_{2}\right)$ extends to a complete quotient map $V_{1} \widehat{\otimes} V_{2} \rightarrow\left(V_{1} / W_{1}\right) \widehat{\otimes}\left(V_{2} / W_{2}\right)$;
- In general, operator space projective tensor product is not injective, that is, for subspaces $W_{i} \subseteq V_{i}, i=1,2$, the induced map $W_{1} \widehat{\otimes} W_{2} \rightarrow V_{1} \widehat{\otimes} V_{2}$ is not a complete isometry. However, for C^{*}-algebras, it is injective for finite dimensional C^{*}-subalgebras.
- Haagerup tensor product is associative, projective, injective and functorial. However, it is not commutative.

Algebraic structure of $A \widehat{\otimes} B$

- (Kumar, Itoh) For C^{*}-algebras A and $B, A \widehat{\otimes} B$ is a Banach *-algebra, and is a C^{*}-algebra if and only if either A or B is \mathbb{C}.
- (Kumar) However, the natural involution is an isometry on $A \otimes^{h} B$ if and only if A and B are commutative.

For operator spaces V and W, and elements $x=\left[x_{i j}\right] \in M_{n}(V)$ and $y=\left[y_{i j}\right] \in M_{n}(W)$, we define an element $x \circ y \in M_{n}(V \otimes W)$ by $x \circ y=\left[x_{i j} \otimes y_{i j}\right]$.

- $x \circ y=\left[e_{11}, e_{22}, e_{33}, \cdots, e_{n n}\right](x \otimes y)\left[e_{11}, e_{22}, e_{33}, \cdots, e_{n n}\right]^{t}$
- Each element u in $M_{p}(V \otimes W), p \in \mathbb{N}$, can be written as $u=\alpha(x \circ y) \beta$ for some $x \in M_{n}(V), y \in M_{n}(W), \alpha \in M_{p, n}$, and $\beta \in M_{n, p}, n \in \mathbb{N}$, and we define

$$
\|u\|_{s}=\inf \{\|\alpha\|\|x\|\|y\|\|\beta\|\}
$$

where infimum is taken over arbitrary decompositions as above. Let $V \otimes_{s} W=\left(V \otimes W,\|\cdot\|_{s}\right)$, and define the Schur tensor product $V \otimes^{s} W$ to be the completion of $V \otimes W$ in this norm.
Note: If $u \in M_{p}(V \otimes W)$ there exist $n \in \mathbb{N}, v \in M_{n}(V), w \in M_{n}(W)$, $\alpha \in M_{p, n}$ and $\beta \in M_{n, p}$ such that $u=\alpha(v \circ w) \beta$.

Schur tensor product of operator spaces

Theorem

For operator spaces V and $W,\|\cdot\|_{s}$ is an operator space matrix norm on $V \otimes W$.

Given operator spaces V, W and Z, a bilinear map $\varphi: V \times W \rightarrow Z$ is said to be Schur bounded bilinear map if the associated maps $\varphi_{n}: M_{n}(V) \times M_{n}(W) \rightarrow M_{n}(Z)$ given by

$$
\varphi_{n}\left(\left(v_{i j}\right),\left(w_{i j}\right)\right)=\left(\varphi\left(v_{i j}, w_{i j}\right)\right), n \in \mathbb{N}
$$

are uniformly bounded, and in this case we denote $\|\varphi\|_{s b}=\sup _{n}\left\|\varphi_{n}\right\|$.

Schur tensor product of operator spaces

Proposition

If V, W and X are operator spaces, then there is a natural isometric identification

$$
C B(V \widehat{\otimes} W, X)=S B(V \times W, X)
$$

The above identification yields a new formula for the Schur norm :

$$
\|u\|_{s}=\sup \{|\varphi(u)|: \varphi \in S B(V \times W, \mathbb{C}),\|\varphi\| \leq 1\}
$$

For operator spaces V_{1}, V_{2} and V_{3}, the product $\hat{\otimes}$ is

- commutative, that is, $V_{1} \otimes^{s} V_{2} \stackrel{c b}{=} V_{2} \otimes^{s} V_{1}$;
- functorial, that is, if $\phi_{i}: V_{i} \rightarrow W_{i}, i=1,2$, are completely bounded maps between the operator spaces, then $\phi_{1} \otimes \phi_{2}: V_{1} \otimes V_{2} \rightarrow W_{1} \otimes W_{2}$ extends to a completely bounded $\operatorname{map} \phi_{1} \otimes^{s} \phi_{2}: V_{1} \otimes^{s} V_{2} \rightarrow W_{1} \otimes^{s} W_{2}$ with $\left\|\phi_{1} \otimes^{s} \phi_{2}\right\|_{\mathrm{cb}} \leq\left\|\phi_{1}\right\|_{\mathrm{cb}}\left\|\phi_{2}\right\|_{\mathrm{cb}}$;
- projective, that is, for closed subspaces $W_{i} \subseteq V_{i}, i=1,2$, the tensor map $V_{1} \otimes V_{2} \rightarrow\left(V_{1} / W_{1}\right) \otimes\left(V_{2} / W_{2}\right)$ extends to a complete quotient map $V_{1} \otimes^{s} V_{2} \rightarrow\left(V_{1} / W_{1}\right) \otimes^{s}\left(V_{2} / W_{2}\right)$;
- Like the operator space projective tensor product, the Schur tensor product is not injective, that is, for subspaces $W_{i} \subseteq V_{i}, i=1,2$, the induced map $W_{1} \otimes^{s} W_{2} \rightarrow V_{1} \otimes^{s} V_{2}$ is not a complete isometry. However, it behaves well for completely complemented subspaces. In particular, if E and F are finite dimensional C^{*}-subalgebras of the C^{*}-algebras A and B, respectively. Then $E \otimes^{s} F$ is a closed *-subalgebra of $A \otimes^{s} B$. Also, for von Neumann algebras M and N, $Z(M) \otimes^{s} Z(N)$ is a closed ${ }^{*}$-subalgebra of $M \otimes^{s} N$.
- Associative, For finite dimensional operator spaces X, Y and any operator space $Z, X \otimes^{s}\left(Y \otimes^{s} Z\right)$ is bi-continuously isomorphic to $\left(X \otimes^{s} Y\right) \otimes^{s} Z$.
- For commutative C^{*}-algebras A and C with identity and a finite dimensional C^{*}-algebra $B, A \otimes^{s}\left(B \otimes^{s} C\right)$ is bi-continuously isomorphic to $\left(A \otimes^{s} B\right) \otimes^{s} C$.

Schur tensor product of completely contractive Banach algebras

Theorem

For completely contractive Banach algebras A and $B, A \otimes^{s} B$ is a Banach algebra, and it is *-algebra provided both A and B have completely isometric involution. Furthermore, if A and B possess bounded approximate identities then $A \otimes^{s} B$ has a bounded approximate identity.

- $A \otimes^{s} B$ is a C^{*}-algebra if and only if either $A=\mathbb{C}$ or $B=\mathbb{C}$.
- $A \otimes^{s} B$ is an operator algebra if and only if either A or B is finite dimensional.

Related Books

- D. P. Blecher and C. L. Merdy, Operator algebras and their modules-an operator space approach, vol. 30, London Mathematical Society Monographs, New series, The Clarendon Press, Oxford University Press, Oxford, 2004.
- E. G. Effros and Z-J. Ruan, Operator Spaces, Clarendon Press, London, 2000.
- G. Pisier, Introduction to Operator space theory, London Mathematical Society, Lecture Note Series 294, Cambridge University Press, Cambridge, 2003.
- Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, 78. Cambridge University Press, Cambridge, 2002.
- Rajpal, V, Kumar, A., and Itoh, T., Schur tensor product of operator spaces, To appear in Forum Mathematicum (2014), DOI: http://dx.doi.org/10.1515/forum-2013-0142, Available on arXiv:1308.4538v1 [math.OA].

THANK YOU

