Frame System in Banach Spaces

Nisha Gupta

Department of Mathematics
Lakshmi Bai College, Delhi nishag.81@gmail.com

IWM-2015

Basics

- A sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ in \mathcal{H} is a frame for \mathcal{H} if $\exists A, B>0$ such that

$$
A\|x\|^{2} \leq \sum_{k=1}^{\infty}\left|<x, x_{k}>\right|^{2} \leq B\|x\|^{2}, \quad \forall x \in \mathcal{H}
$$

Basics

- A sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ in \mathcal{H} is a frame for \mathcal{H} if $\exists A, B>0$ such that

$$
A\|x\|^{2} \leq \sum_{k=1}^{\infty}\left|<x, x_{k}>\right|^{2} \leq B\|x\|^{2}, \quad \forall x \in \mathcal{H}
$$

- A and $B \rightarrow$ frame bounds.

Basics

- A sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ in \mathcal{H} is a frame for \mathcal{H} if $\exists A, B>0$ such that

$$
A\|x\|^{2} \leq \sum_{k=1}^{\infty}\left|<x, x_{k}>\right|^{2} \leq B\|x\|^{2}, \quad \forall x \in \mathcal{H}
$$

- A and $B \rightarrow$ frame bounds.
- For frame $\left\{x_{n}\right\}$ in $\mathcal{H}, T: l^{2}(\mathbb{N}) \rightarrow \mathcal{H}$,

$$
T\left(\left\{c_{k}\right\}\right)=\sum_{k=1}^{\infty} c_{k} x_{k}
$$

is pre- frame operator.

Basics

- The adjoint operator of $T, T^{*}: \mathcal{H} \rightarrow l^{2}$

$$
T^{*}(x)=\left\{<x, x_{k}>\right\}_{k=1}^{\infty}
$$

is known as analysis operator.

Basics

- The adjoint operator of $T, T^{*}: \mathcal{H} \rightarrow l^{2}$

$$
T^{*}(x)=\left\{<x, x_{k}>\right\}_{k=1}^{\infty}
$$

is known as analysis operator.

- Frame operator $S=T T^{*}: \mathcal{H} \rightarrow \mathcal{H}$ defined as

$$
S(x)=\sum_{k=1}^{\infty}<x, x_{k}>x_{k} \quad x \in \mathcal{H}
$$

- Let $\left\{x_{n}\right\}$ be a frame for \mathcal{H} with frame operator \mathcal{S}. Then

$$
x=\sum_{k=1}^{\infty}<x, S^{-1} x_{k}>x_{k}, \quad x \in \mathcal{H} .
$$

- Let $\left\{x_{n}\right\}$ be a frame for \mathcal{H} with frame operator \mathcal{S}. Then

$$
x=\sum_{k=1}^{\infty}<x, S^{-1} x_{k}>x_{k}, \quad x \in \mathcal{H}
$$

- Let $\left\{x_{n}\right\}$ in \mathcal{E} and $\left\{f_{n}\right\}$ in \mathcal{E}^{*}. Then $\left(\left\{f_{n}\right\},\left\{x_{n}\right\}\right)$ is an atomic decomposition of \mathcal{E} with respect to \mathcal{E}_{d}, if
(a) $\left\{f_{n}(x)\right\} \in \mathcal{E}_{d}, \forall x \in \mathcal{E}$.
(b) $A\|x\|_{E} \leq\left\|\left\{f_{n}(x)\right\}\right\|_{E_{d}} \leq B\|x\|_{E}, \quad x \in \mathcal{E}$
(c) $x=\sum_{k=1}^{\infty} f_{k}(x) x_{k}, \forall x \in \mathcal{E}$.
$A, B \rightarrow$ atomic bounds.

Banach Frame

Let $\left\{f_{n}\right\}$ in \mathcal{E}^{*} and $\mathcal{S}: \mathcal{E}_{d} \rightarrow \mathcal{E}$. Then $\left(\left\{f_{n}\right\}, \mathcal{S}\right)$ is Banach frame for \mathcal{E} w.r.to \mathcal{E}_{d} if

Banach Frame

Let $\left\{f_{n}\right\}$ in \mathcal{E}^{*} and $\mathcal{S}: \mathcal{E}_{d} \rightarrow \mathcal{E}$. Then $\left(\left\{f_{n}\right\}, \mathcal{S}\right)$ is Banach frame for \mathcal{E} w.r.to \mathcal{E}_{d} if
(a) $\left\{f_{n}(x)\right\} \in \mathcal{E}_{d}, \forall x \in \mathcal{E}$.

Banach Frame

Let $\left\{f_{n}\right\}$ in \mathcal{E}^{*} and $\mathcal{S}: \mathcal{E}_{d} \rightarrow \mathcal{E}$. Then $\left(\left\{f_{n}\right\}, \mathcal{S}\right)$ is Banach frame for \mathcal{E} w.r.to \mathcal{E}_{d} if
(a) $\left\{f_{n}(x)\right\} \in \mathcal{E}_{d}, \forall x \in \mathcal{E}$.
(b) $A\|x\|_{\mathcal{E}} \leq\left\|\left\{f_{n}(x)\right\}\right\|_{\mathcal{E}_{d}} \leq B\|x\|_{\mathcal{E}}, \quad x \in \mathcal{E}$.

Banach Frame

Let $\left\{f_{n}\right\}$ in \mathcal{E}^{*} and $\mathcal{S}: \mathcal{E}_{d} \rightarrow \mathcal{E}$. Then $\left(\left\{f_{n}\right\}, \mathcal{S}\right)$ is Banach frame for \mathcal{E} w.r.to \mathcal{E}_{d} if
(a) $\left\{f_{n}(x)\right\} \in \mathcal{E}_{d}, \forall x \in \mathcal{E}$.
(b) $A\|x\|_{\mathcal{E}} \leq\left\|\left\{f_{n}(x)\right\}\right\|_{\mathcal{E}_{d}} \leq B\|x\|_{\mathcal{E}}, \quad x \in \mathcal{E}$.
(c) \mathcal{S} is bounded linear operator s.t.

$$
\mathcal{S}\left(f_{n}(x)\right)=x \quad x \in \mathcal{E} .
$$

$A, B \rightarrow$ frame bounds.
(i) Tight frame if $A=B$
(i) Tight frame if $A=B$
(ii) Normalized tight frame if $A=B=1$
(i) Tight frame if $A=B$
(ii) Normalized tight frame if $A=B=1$
(iii) Exact frame if there exists no reconstruction operator \mathcal{S}_{0} such that $\left(\left\{f_{n}\right\}_{n \neq i}, \mathcal{S}_{0}\right)(i \in \mathbb{N})$ is a Banach frame for \mathcal{E}.

Examples

- For $\mathcal{E}=c_{0}$ and $\left\{f_{n}\right\}$ in \mathcal{E}^{*} defined as

$$
f_{n}(x)=\xi_{n},(n \in \mathbb{N}) \quad x=\left\{\xi_{n}\right\} \in \mathcal{E} .
$$

Then there exist $\mathcal{E}_{d}=\left\{\left\{f_{n}(x)\right\}: x \in \mathcal{E}\right\}$ with norm

$$
\left\|\left\{f_{n}(x)\right\}\right\|_{\mathcal{E}_{d}}=\|x\|_{\mathcal{E}}
$$

and $S: \mathcal{E}_{d} \rightarrow \mathcal{E}$ defined by

$$
S\left(\left\{f_{n}(x)\right\}\right)=x, \quad x \in \mathcal{E} .
$$

Thus $\left(\left\{f_{n}\right\}, S\right)$ is a Banach frame for \mathcal{E} w. r. to \mathcal{E}_{d}.

- ℓ^{∞} / c_{0} does not have any Banach frame.

Few Results on Banach Frames

(1) If a Banach space \mathcal{E} has an atomic decomposition, then \mathcal{E} has a Banach frame. The converse need not be true.

Few Results on Banach Frames

(1) If a Banach space \mathcal{E} has an atomic decomposition, then \mathcal{E} has a Banach frame. The converse need not be true.
(2) A Banach space with an atomic decomposition is separable. However, the converse need not be true.

Few Results on Banach Frames

(1) If a Banach space \mathcal{E} has an atomic decomposition, then \mathcal{E} has a Banach frame. The converse need not be true.
(2) A Banach space with an atomic decomposition is separable. However, the converse need not be true.
(3) Every separable Banach space has a normalized tight and exact Banach frame.

Few Results on Banach Frames

(1) If a Banach space \mathcal{E} has an atomic decomposition, then \mathcal{E} has a Banach frame. The converse need not be true.
(2) A Banach space with an atomic decomposition is separable. However, the converse need not be true.
(3) Every separable Banach space has a normalized tight and exact Banach frame.
(4) Let \mathcal{E} be a Banach space having a Banach frame. Then, \mathcal{E} has a normalized tight and exact Banach frame.

Frames in Subspaces of Banach Spaces

- Every Banach space \mathcal{E} has a closed subspace having a Banach frame.

Frames in Subspaces of Banach Spaces

- Every Banach space \mathcal{E} has a closed subspace having a Banach frame.
- Let $\left(\left\{f_{n}\right\}, \mathcal{S}\right)\left(\left\{f_{n}\right\} \subset \mathcal{E}^{*}, \mathcal{S}: \mathcal{E}_{d} \rightarrow \mathcal{E}\right)$ be a Banach frame for \mathcal{E} and \mathcal{G} be a closed subspace of \mathcal{E}. Then, $\exists \mathcal{G}_{d}$ and $T: \mathcal{G}_{d} \rightarrow \mathcal{G}$ such that $\left(\left\{\left.f_{n}\right|_{\mathcal{G}}\right\}, \mathcal{T}\right)$ is a Banach frame for \mathcal{G} w.r.to \mathcal{G}_{d}

Frames in Subspaces of Banach Spaces

- Every Banach space \mathcal{E} has a closed subspace having a Banach frame.
- Let $\left(\left\{f_{n}\right\}, \mathcal{S}\right)\left(\left\{f_{n}\right\} \subset \mathcal{E}^{*}, \mathcal{S}: \mathcal{E}_{d} \rightarrow \mathcal{E}\right)$ be a Banach frame for \mathcal{E} and \mathcal{G} be a closed subspace of \mathcal{E}. Then, $\exists \mathcal{G}_{d}$ and $T: \mathcal{G}_{d} \rightarrow \mathcal{G}$ such that $\left(\left\{\left.f_{n}\right|_{\mathcal{G}}\right\}, \mathcal{T}\right)$ is a Banach frame for \mathcal{G} w.r.to \mathcal{G}_{d}
- Let $\left(\left\{f_{n}\right\}, \mathcal{S}\right)\left(\left\{f_{n}\right\} \subset \mathcal{E}^{*}, \mathcal{S}: \mathcal{E}_{d} \rightarrow \mathcal{E}\right)$ be a Banach frame for E. Then, for every $\left\{n_{k}\right\}, \exists$ a closed subspace \mathcal{G} of \mathcal{E} and $T: \mathcal{G}_{d} \rightarrow \mathcal{G}$ such that $\left(\left\{f_{n_{k}} \mid \mathcal{G}\right\}, \mathcal{T}\right)$ is Banach frame for \mathcal{G} w.r.t \mathcal{G}_{d}.

Frames in Subspaces of Banach Spaces

- Let $\left(\left\{f_{n}\right\} \mathcal{S}\right)\left(\left\{f_{n}\right\} \subset \mathcal{E}^{*}, \mathcal{S}: \mathcal{E}_{d}\right.$ to $\left.\mathcal{E}\right)$ be a exact Banach frame for \mathcal{E}. Then, for every $\left\{n_{k}\right\}, \exists$ a closed subspace \mathcal{G} of \mathcal{E} and $T: \mathcal{G}_{d}$ to \mathcal{G} such that $\left(\left\{\left.f_{n_{k}}\right|_{\mathcal{G}}\right\} \mathcal{T}\right)$ is exact Banach frame for \mathcal{G} w.r.to \mathcal{G}_{d}

Frames in Subspaces of Banach Spaces

- Let $\left(\left\{f_{n}\right\} \mathcal{S}\right)\left(\left\{f_{n}\right\} \subset \mathcal{E}^{*}, \mathcal{S}: \mathcal{E}_{d}\right.$ to $\left.\mathcal{E}\right)$ be a exact Banach frame for \mathcal{E}. Then, for every $\left\{n_{k}\right\}, \exists$ a closed subspace \mathcal{G} of \mathcal{E} and $T: \mathcal{G}_{d}$ to \mathcal{G} such that $\left(\left\{\left.f_{n_{k}}\right|_{\mathcal{G}}\right\} \mathcal{T}\right)$ is exact Banach frame for \mathcal{G} w.r.to \mathcal{G}_{d}
- Let $\mathcal{G} \subset \mathcal{E}$ such that \mathcal{G} and E / G have Banach frames.

Then E also have a Banach Frame.

For $\mathcal{E}=\ell^{\infty}$ and $\mathcal{G}=c_{0} . \mathcal{E}$ and \mathcal{G} have Banach frame, however $\mathcal{E} / \mathcal{G}$ has no Banach frame.

Banach Frame System

- Let $\left(\left\{f_{n}\right\}, \mathcal{S}\right)\left(\left\{f_{n}\right\} \subset \mathcal{E}^{*}, \mathcal{S}: \mathcal{E}_{d} \rightarrow \mathcal{E}\right)$ is a Banach frame for \mathcal{E} w.r.to \mathcal{E}_{d}. Let $\left\{\phi_{n}\right\}$ in $\mathcal{E}^{* *}$ be such that

$$
\phi_{i}\left(f_{j}\right)=\delta_{i, j}, \quad i, j \in \mathcal{N} .
$$

Banach Frame System

- Let $\left(\left\{f_{n}\right\}, \mathcal{S}\right)\left(\left\{f_{n}\right\} \subset \mathcal{E}^{*}, \mathcal{S}: \mathcal{E}_{d} \rightarrow \mathcal{E}\right)$ is a Banach frame for \mathcal{E} w.r.to \mathcal{E}_{d}. Let $\left\{\phi_{n}\right\}$ in $\mathcal{E}^{* *}$ be such that

$$
\phi_{i}\left(f_{j}\right)=\delta_{i, j}, \quad i, j \in \mathcal{N} .
$$

If $\exists \mathcal{E}_{d}^{*}$ and $\mathcal{T}: \mathcal{E}^{*}{ }_{d} \rightarrow \mathcal{E}^{*}$ such that $\left(\left\{\phi_{n}\right\}, \mathcal{T}\right)$ is a Banach frame for \mathcal{E}^{*} w.r.to \mathcal{E}_{d}^{*}, then

$$
\left(\left(\left\{f_{n}\right\}, \mathcal{S}\right),\left(\left\{\phi_{n}\right\}, \mathcal{T}\right)\right)
$$

is a Banach frame system for E.

- $\left(\left\{\phi_{n}\right\}, \mathcal{T}\right)$ is called an admissible Banach frame to $\left(\left\{f_{n}\right\}, \mathcal{S}\right)$.

Examples of Banach frame System

Let $\mathcal{E}=l^{1}$ and $\left\{f_{n}\right\} \subset \mathcal{E}^{*}$. Define $\left\{g_{n}\right\} \subset \mathcal{E}^{* *}$ by

$$
g_{n}(x)=\xi_{n}, \quad x=\left\{\xi_{n}\right\} \in \ell^{\infty}, n \in \mathbb{N} .
$$

Let $\mathcal{E}_{d}=\left\{\left\{f_{n}(x)\right\}: x \in \mathcal{E}\right\}$ and $\left(\mathcal{E}^{*}\right)_{d}=\left\{\left\{g_{n}(f): f \in \mathcal{E}^{*}\right\}\right.$.
Then \mathcal{E}_{d} and $\left(\mathcal{E}^{*}\right)_{d}$ are associated Banach space with norms given by $\left\|\left\{f_{n}(x)\right\}\right\|_{\mathcal{E}_{d}}=\|x\|_{\mathcal{E}}, x \in \mathcal{E}$ and
$\left\|\left\{g_{n}(f)\right\}\right\|_{\left(\mathcal{E}^{*}\right)_{d}}=\|f\|_{\mathcal{E}^{*}}, f \in \mathcal{E}^{*}$ respectively. Define
$S: \mathcal{E}_{d} \rightarrow \mathcal{E}$ by $S\left(\left\{f_{n}(x)\right\}\right)=x, x \in \mathcal{E}$ and $T:\left(\mathcal{E}^{*}\right)_{d} \rightarrow \mathcal{E}^{*}$ by
$T\left(\left\{g_{n}(f)\right\}\right)=f, f \in \mathcal{E}^{*}$. Then $\left(\left(\left\{f_{n}\right\}, \mathcal{S}\right),\left(\left\{g_{n}\right\}, \mathcal{T}\right)\right)$ is a
Banach frame system for \mathcal{E}.

Examples of Banach frame System

ℓ^{∞} has no Banach frame system however it posseses a Banach frame.

Towards Uniqueness

As $\left[f_{n}\right] \neq \mathcal{E}^{*}$, let $e \in \mathcal{E}^{*} \backslash\left[f_{n}\right], \exists g_{0} \in \mathcal{E}^{* *}$ such that

$$
g_{0}(e) \neq 0
$$

and

$$
g_{0}\left(\left[f_{n}\right]\right)=0 .
$$

Towards Uniqueness

As $\left[f_{n}\right] \neq \mathcal{E}^{*}$, let $e \in \mathcal{E}^{*} \backslash\left[f_{n}\right], \exists g_{0} \in \mathcal{E}^{* *}$ such that

$$
g_{0}(e) \neq 0
$$

and

$$
g_{0}\left(\left[f_{n}\right]\right)=0 .
$$

Define $\left\{\phi_{n}\right\} \subset \mathcal{E}^{* *}$ by

$$
\phi_{1}=g_{1}-g_{0}, \phi_{n}=g_{n}, n=2,3,4, . .
$$

Towards Uniqueness

As $\left[f_{n}\right] \neq \mathcal{E}^{*}$, let $e \in \mathcal{E}^{*} \backslash\left[f_{n}\right], \exists g_{0} \in \mathcal{E}^{* *}$ such that

$$
g_{0}(e) \neq 0
$$

and

$$
g_{0}\left(\left[f_{n}\right]\right)=0 .
$$

Define $\left\{\phi_{n}\right\} \subset \mathcal{E}^{* *}$ by

$$
\phi_{1}=g_{1}-g_{0}, \phi_{n}=g_{n}, n=2,3,4, . .
$$

Then $\left(\left\{\phi_{n}\right\}, T_{0}\right)$ is another admissible Banach frame to $\left(\left\{f_{n}\right\}, \mathcal{S}\right)$, where

$$
T_{0}:\left(\mathcal{E}^{*}\right)_{d} \rightarrow \mathcal{E}^{*}
$$

by $T_{0}\left(\left\{g_{n}(f)\right\}\right)=f, f \in \mathcal{E}^{*}$

Theorems

Theorem

$\operatorname{Let}\left(\left(\left\{f_{n}\right\}, \mathcal{S}\right),\left(\left\{g_{n}\right\}, \mathcal{T}\right)\right)$ be a Banach frame system for \mathcal{E}.
Then, $\left(\left\{g_{n}\right\}, \mathcal{T}\right)$ is the unique admissible Banach frame to
($\left\{f_{n}\right\}, \mathcal{S}$) if and only if $\left[f_{n}\right]=\mathcal{E}^{*}$

Theorems

Theorem

$\operatorname{Let}\left(\left(\left\{f_{n}\right\}, \mathcal{S}\right),\left(\left\{g_{n}\right\}, \mathcal{T}\right)\right)$ be a Banach frame system for \mathcal{E}.
Then, $\left(\left\{g_{n}\right\}, \mathcal{T}\right)$ is the unique admissible Banach frame to ($\left\{f_{n}\right\}, \mathcal{S}$) if and only if $\left[f_{n}\right]=\mathcal{E}^{*}$

Theorem
If $\left(\left\{f_{n}\right\}, \mathcal{S}\right)$ is an exact Banach frame for \mathcal{E} such that

$$
\bigcap_{n=1}^{\infty}\left[\widetilde{f_{i}}\right]_{i=n+1}^{\infty}=\{0\} .
$$

Then, \mathcal{E} has a Banach frame system.

Theorems

Theorem
If $\left(\left(\left\{f_{n}\right\}, \mathcal{S}\right),\left(\left\{\phi_{n}\right\}, \mathcal{T}\right)\right)$ is a Banach frame system for \mathcal{E} such that each ϕ_{n} is weak* continuous, then

$$
\bigcap_{n=1}^{\infty}\left[\widetilde{f}_{i}\right]_{i=n+1}^{\infty}=\{0\} .
$$

Theorems

Theorem

If $\left(\left(\left\{f_{n}\right\}, \mathcal{S}\right),\left(\left\{\phi_{n}\right\}, \mathcal{T}\right)\right)$ is a Banach frame system for \mathcal{E} such that each ϕ_{n} is weak* continuous, then

$$
\bigcap_{n=1}^{\infty}\left[\widetilde{f}_{i}\right]_{i=n+1}^{\infty}=\{0\} .
$$

Theorem
If \mathcal{E}^{*} has a Banach frame $\left(\left\{\phi_{n}\right\}, \mathcal{T}\right)$, where ϕ_{n} is weak ${ }^{*}$ continuous for each $n \in \mathbb{N}$, then \mathcal{E} has a Banach frame system.

References I

國 P．G．Casazza，The art of frame theory，Taiwanese J． Math．，4（2）（2000），129－201．

围 P．G．Casazza，D．Han and D．R．Larson，Frame for Banach spaces Contem．Math．，247（1999），149－182．

目 O．Christensen，an introduction to frames and Riesz
Bases，Birkhauser，Boston，Inc．，Boston MA， 2003.

References II

R R.J. Duffin and A.C. Schaeffer, A class of non-harmonic
Fourier series, Trans. Amer. Math. Soc., 72(1952), 341-366.

國 M. Fabian, P. Habala, P. Hajek, V.M. Santalueia, J.
Petant and V. Zizler, Fuctional Analysis and Infinite-Dimentional Geometry, Springer- Verlag, New York, 2001.

References III

目 K.H. Grochenig, Describing fuctions: Atomic decompositions versus frames, Monatsh. fur Mathematik, 112(1991), 1-41.

围 P.K. Jain, S.K. Kaushik and Nisha Gupta, On frame system in Banach spaces, International Journal of Wavelets, multiresolution and information processing (IJWMIP), 7(1)2009,1-7.

References IV

國 P.K. Jain, S.K. Kaushik and L.K. Vashist, On perturbation of Banach frames in Banach spaces, International Journal of Wavelets, multiresolution and information processing (IJWMIP), 4(3)(2006), 559-565.

䡒 S.K. Kaushik, Nisha Gupta and P.K. Jain, Frames in subspaces in Banach spaces, Bulletin of the Calcutta Mathematical Soc. ,101,(3) 229-234(2009)

References V

R R.H. Lohman and W.J. Stiles, On separability in linear topological spaces, Proc. Amer. Soc. Vol. 42(1), Jan 1974, 236-237.

国 I.Singer in Banach Spaces-I. Springer -verlag, New York, 1970.

THANK YOU

