Frame System in Banach Spaces

Nisha Gupta

Department of Mathematics

Lakshmi Bai College, Delhi

nishag.81@gmail.com

IWM-2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 A sequence {x_k}[∞]_{k=1} in H is a frame for H if ∃ A, B > 0 such that

$$A||x||^2 \le \sum_{k=1}^{\infty} |\langle x, x_k \rangle|^2 \le B||x||^2, \quad \forall x \in \mathcal{H}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 A sequence {x_k}[∞]_{k=1} in H is a frame for H if ∃ A, B > 0 such that

$$A||x||^2 \le \sum_{k=1}^{\infty} |\langle x, x_k \rangle|^2 \le B||x||^2, \quad \forall x \in \mathcal{H}.$$

・ロト・日本・モト・モート ヨー うへで

• $A \text{ and } B \rightarrow \text{frame bounds.}$

 A sequence {x_k}[∞]_{k=1} in H is a frame for H if ∃ A, B > 0 such that

$$A||x||^2 \le \sum_{k=1}^{\infty} |\langle x, x_k \rangle|^2 \le B||x||^2, \quad \forall x \in \mathcal{H}.$$

- A and $B \rightarrow$ frame bounds.
- For frame $\{x_n\}$ in \mathcal{H} , $T: l^2(\mathbb{N}) \to \mathcal{H}$,

$$T(\{c_k\}) = \sum_{k=1}^{\infty} c_k x_k.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

is pre- frame operator.

• The adjoint operator of $T,\,T^*:\mathcal{H}\to l^2$

$$T^*(x) = \{\langle x, x_k \rangle\}_{k=1}^{\infty}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

is known as analysis operator.

• The adjoint operator of T, $T^*: \mathcal{H} \to l^2$

$$T^*(x) = \{\langle x, x_k \rangle\}_{k=1}^{\infty}.$$

is known as analysis operator.

• Frame operator $S=TT^*:\mathcal{H}\to\mathcal{H}$ defined as

$$S(x) = \sum_{k=1}^{\infty} \langle x, x_k \rangle x_k \quad x \in \mathcal{H}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Let $\{x_n\}$ be a frame for \mathcal{H} with frame operator \mathcal{S} . Then

$$x = \sum_{k=1}^{\infty} \langle x, S^{-1}x_k \rangle x_k, \quad x \in \mathcal{H}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Let $\{x_n\}$ be a frame for \mathcal{H} with frame operator \mathcal{S} . Then

$$x = \sum_{k=1}^{\infty} \langle x, S^{-1}x_k \rangle x_k, \quad x \in \mathcal{H}.$$

Let {x_n} in *E* and {f_n} in *E**. Then ({f_n}, {x_n}) is an atomic decomposition of *E* with respect to *E_d*, if

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(a)
$$\{f_n(x)\} \in \mathcal{E}_d, \forall x \in \mathcal{E}.$$

(b) $A||x||_E \le ||\{f_n(x)\}||_{E_d} \le B||x||_E, \quad x \in \mathcal{E}$
(c) $x = \sum_{k=1}^{\infty} f_k(x)x_k$, $\forall x \in \mathcal{E}.$
 $A, B \to \text{atomic bounds.}$

Let $\{f_n\}$ in \mathcal{E}^* and $\mathcal{S} : \mathcal{E}_d \to \mathcal{E}$. Then $(\{f_n\}, \mathcal{S})$ is Banach frame for \mathcal{E} w.r.to \mathcal{E}_d if

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $\{f_n\}$ in \mathcal{E}^* and $\mathcal{S} : \mathcal{E}_d \to \mathcal{E}$. Then $(\{f_n\}, \mathcal{S})$ is Banach frame for \mathcal{E} w.r.to \mathcal{E}_d if

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(a) $\{f_n(x)\} \in \mathcal{E}_d, \forall x \in \mathcal{E}.$

Let $\{f_n\}$ in \mathcal{E}^* and $\mathcal{S} : \mathcal{E}_d \to \mathcal{E}$. Then $(\{f_n\}, \mathcal{S})$ is Banach frame for \mathcal{E} w.r.to \mathcal{E}_d if

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(a) $\{f_n(x)\} \in \mathcal{E}_d, \forall x \in \mathcal{E}.$

(b) $A \|x\|_{\mathcal{E}} \leq \|\{f_n(x)\}\|_{\mathcal{E}_d} \leq B \|x\|_{\mathcal{E}}, \quad x \in \mathcal{E}.$

Let $\{f_n\}$ in \mathcal{E}^* and $\mathcal{S} : \mathcal{E}_d \to \mathcal{E}$. Then $(\{f_n\}, \mathcal{S})$ is Banach frame for \mathcal{E} w.r.to \mathcal{E}_d if

(a)
$$\{f_n(x)\} \in \mathcal{E}_d, \forall x \in \mathcal{E}.$$

(b) $A \|x\|_{\mathcal{E}} \leq \|\{f_n(x)\}\|_{\mathcal{E}_d} \leq B \|x\|_{\mathcal{E}}, \quad x \in \mathcal{E}.$

(c) S is bounded linear operator s.t.

$$\mathcal{S}(f_n(x)) = x \quad x \in \mathcal{E}.$$

 $A, B \rightarrow$ frame bounds.

(i) Tight frame if A = B

(i) Tight frame if A = B
(ii) Normalized tight frame if A = B = 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- (i) Tight frame if A = B
- (ii) Normalized tight frame if A = B = 1
- (iii) Exact frame if there exists no reconstruction operator S₀ such that ({f_n}_{n≠i}, S₀) (i ∈ N) is a Banach frame for E.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples

• For $\mathcal{E} = c_0$ and $\{f_n\}$ in \mathcal{E}^* defined as

$$f_n(x) = \xi_n, \ (n \in \mathbb{N}) \quad x = \{\xi_n\} \in \mathcal{E}.$$

Then there exist $\mathcal{E}_d = \{\{f_n(x)\} : x \in \mathcal{E}\}$ with norm

$$||\{f_n(x)\}||_{\mathcal{E}_d} = ||x||_{\mathcal{E}}$$

and $S: \mathcal{E}_d \to \mathcal{E}$ defined by

$$S(\{f_n(x)\}) = x, \quad x \in \mathcal{E}.$$

Thus $({f_n}, S)$ is a Banach frame for \mathcal{E} w. r. to \mathcal{E}_d .

• ℓ^{∞}/c_0 does not have any Banach frame.

If a Banach space *E* has an atomic decomposition, then *E* has a Banach frame. The converse need not be true.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If a Banach space *E* has an atomic decomposition, then *E* has a Banach frame. The converse need not be true.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(2) A Banach space with an atomic decomposition is separable. However, the converse need not be true.

- If a Banach space *E* has an atomic decomposition, then *E* has a Banach frame. The converse need not be true.
- (2) A Banach space with an atomic decomposition is separable. However, the converse need not be true.
- (3) Every separable Banach space has a normalized tight and exact Banach frame.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- If a Banach space *E* has an atomic decomposition, then *E* has a Banach frame. The converse need not be true.
- (2) A Banach space with an atomic decomposition is separable. However, the converse need not be true.
- (3) Every separable Banach space has a normalized tight and exact Banach frame.
- (4) Let \mathcal{E} be a Banach space having a Banach frame. Then, \mathcal{E} has a normalized tight and exact Banach frame.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Every Banach space *E* has a closed subspace having a Banach frame.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Every Banach space *E* has a closed subspace having a Banach frame.
- Let ({f_n}, S)({f_n} ⊂ E*, S : E_d → E) be a Banach frame for E and G be a closed subspace of E. Then, ∃ G_d and T : G_d → G such that ({f_n|_G}, T) is a Banach frame for G w.r.to G_d

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Every Banach space *E* has a closed subspace having a Banach frame.
- Let ({f_n}, S)({f_n} ⊂ E*, S : E_d → E) be a Banach frame for E and G be a closed subspace of E. Then, ∃ G_d and T : G_d → G such that ({f_n|_G}, T) is a Banach frame for G w.r.to G_d
- Let ({f_n}, S)({f_n} ⊂ E*, S : E_d → E) be a Banach frame for E. Then, for every {n_k}, ∃ a closed subspace G of E and T : G_d → G such that ({f_{n_k|G}}, T) is Banach frame for G w.r.t G_d.

Let ({f_n} S)({f_n} ⊂ E*, S:E_d to E) be a exact Banach frame for E. Then, for every {n_k}, ∃ a closed subspace G of E and T : G_d to G such that ({f_{n_k}|_G} T) is exact Banach frame for G w.r.to G_d

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Let ({f_n} S)({f_n} ⊂ E*, S:E_d to E) be a exact Banach frame for E. Then, for every {n_k}, ∃ a closed subspace G of E and T : G_d to G such that ({f_{n_k}|_G} T) is exact Banach frame for G w.r.to G_d
- Let G ⊂ E such that G and E/G have Banach frames.
 Then E also have a Banach Frame.

For $\mathcal{E} = \ell^{\infty}$ and $\mathcal{G} = c_0$. \mathcal{E} and \mathcal{G} have Banach frame, however \mathcal{E}/\mathcal{G} has no Banach frame.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Banach Frame System

• Let $(\{f_n\}, S)(\{f_n\} \subset \mathcal{E}^*, S : \mathcal{E}_d \to \mathcal{E})$ is a Banach frame for \mathcal{E} w.r.to \mathcal{E}_d . Let $\{\phi_n\}$ in \mathcal{E}^{**} be such that

 $\phi_i(f_j) = \delta_{i,j}, \quad i, j \in \mathcal{N}.$

・ロト・日本・モト・モート ヨー うへで

Banach Frame System

 Let ({f_n}, S)({f_n} ⊂ E*, S : E_d → E) is a Banach frame for E w.r.to E_d. Let {φ_n} in E** be such that

$$\phi_i(f_j) = \delta_{i,j}, \quad i, j \in \mathcal{N}.$$

If $\exists \mathcal{E}_d^*$ and $\mathcal{T} : \mathcal{E}_d^* \to \mathcal{E}^*$ such that $(\{\phi_n\}, \mathcal{T})$ is a Banach frame for \mathcal{E}^* w.r.to \mathcal{E}_d^* , then

$$((\{f_n\},\mathcal{S}),(\{\phi_n\},\mathcal{T}))$$

is a Banach frame system for E.

• $(\{\phi_n\}, \mathcal{T})$ is called an admissible Banach frame to $(\{f_n\}, S).$

Examples of Banach frame System

Let $\mathcal{E} = l^1$ and $\{f_n\} \subset \mathcal{E}^*$. Define $\{g_n\} \subset \mathcal{E}^{**}$ by

$$g_n(x) = \xi_n, \quad x = \{\xi_n\} \in \ell^\infty, \ n \in \mathbb{N}.$$

Let $\mathcal{E}_d = \{\{f_n(x)\} : x \in \mathcal{E}\}\ \text{and}\ (\mathcal{E}^*)_d = \{\{g_n(f) : f \in \mathcal{E}^*\}.\$ Then \mathcal{E}_d and $(\mathcal{E}^*)_d$ are associated Banach space with norms given by $||\{f_n(x)\}||_{\mathcal{E}_d} = ||x||_{\mathcal{E}}, x \in \mathcal{E}$ and $||\{g_n(f)\}||_{(\mathcal{E}^*)_d} = ||f||_{\mathcal{E}^*}, f \in \mathcal{E}^*\ \text{respectively.}\ \text{Define}$ $S : \mathcal{E}_d \to \mathcal{E}\ \text{by}\ S(\{f_n(x)\}) = x, x \in \mathcal{E}\ \text{and}\ T : (\mathcal{E}^*)_d \to \mathcal{E}^*\ \text{by}$ $T(\{g_n(f)\}) = f, f \in \mathcal{E}^*.\ \text{Then}\ ((\{f_n\}, \mathcal{S}), (\{g_n\}, \mathcal{T}))\ \text{is a}$ Banach frame system for $\mathcal{E}.$

Examples of Banach frame System

 ℓ^∞ has no Banach frame system however it posseses a Banach frame.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Towards Uniqueness

As
$$[f_n] \neq \mathcal{E}^*$$
, let $e \in \mathcal{E}^* \setminus [f_n]$, $\exists g_0 \in \mathcal{E}^{**}$ such that

$$g_0(e) \neq 0$$

 and

$$g_0([f_n]) = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Towards Uniqueness

As
$$[f_n]
eq \mathcal{E}^*$$
, let $e \in \mathcal{E}^* \setminus [f_n]$, $\exists \ g_0 \in \mathcal{E}^{**}$ such that

$$g_0(e) \neq 0$$

 and

$$g_0([f_n]) = 0.$$

Define $\{\phi_n\} \subset \mathcal{E}^{**}$ by

$$\phi_1 = g_1 - g_0, \phi_n = g_n, n = 2, 3, 4, \dots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Towards Uniqueness

As
$$[f_n]
eq \mathcal{E}^*$$
, let $e \in \mathcal{E}^* \setminus [f_n]$, $\exists \ g_0 \in \mathcal{E}^{**}$ such that

$$g_0(e) \neq 0$$

and

$$g_0([f_n]) = 0.$$

Define $\{\phi_n\} \subset \mathcal{E}^{**}$ by

$$\phi_1 = g_1 - g_0, \phi_n = g_n, n = 2, 3, 4, \dots$$

Then $(\{\phi_n\},T_0)$ is another admissible Banach frame to $(\{f_n\},\ \mathcal{S}),\ \text{where}$

$$T_0: (\mathcal{E}^*)_d \to \mathcal{E}^*$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

by $T_0(\{g_n(f)\}) = f, f \in \mathcal{E}^*$

Theorem

Let $((\{f_n\}, S), (\{g_n\}, T))$ be a Banach frame system for \mathcal{E} . Then, $(\{g_n\}, T)$ is the unique admissible Banach frame to $(\{f_n\}, S)$ if and only if $[f_n] = \mathcal{E}^*$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

Let $((\{f_n\}, S), (\{g_n\}, T))$ be a Banach frame system for \mathcal{E} . Then, $(\{g_n\}, T)$ is the unique admissible Banach frame to $(\{f_n\}, S)$ if and only if $[f_n] = \mathcal{E}^*$

Theorem

If $(\{f_n\}, S)$ is an exact Banach frame for \mathcal{E} such that

$$\bigcap_{n=1}^{\infty} \left[\widetilde{f_i} \right]_{i=n+1}^{\infty} = \{0\}.$$

Then, \mathcal{E} has a Banach frame system.

Theorem

If $((\{f_n\}, S), (\{\phi_n\}, T))$ is a Banach frame system for \mathcal{E} such that each ϕ_n is $weak^*$ continuous, then

$$\bigcap_{n=1}^{\infty} \left[\widetilde{f_i} \right]_{i=n+1}^{\infty} = \{0\}.$$

Theorem

If $((\{f_n\}, S), (\{\phi_n\}, T))$ is a Banach frame system for \mathcal{E} such that each ϕ_n is $weak^*$ continuous, then

$$\bigcap_{n=1}^{\infty} [\widetilde{f_i}]_{i=n+1}^{\infty} = \{0\}.$$

Theorem

If \mathcal{E}^* has a Banach frame $(\{\phi_n\}, \mathcal{T})$, where ϕ_n is $weak^*$

continuous for each $n\in\mathbb{N}$, then $\mathcal E$ has a Banach frame

system.

References I

- P. G. Casazza, The art of frame theory, Taiwanese J.Math.,4(2) (2000), 129-201.
- P.G. Casazza, D. Han and D.R. Larson, Frame for Banach spaces Contem. Math., 247(1999), 149-182.

O. Christensen, an introduction to frames and Riesz
 Bases, Birkhauser, Boston, Inc., Boston MA, 2003.

References II

- R.J. Duffin and A.C. Schaeffer, A class of non-harmonic Fourier series, Trans. Amer. Math. Soc., 72(1952), 341-366.
- M. Fabian, P. Habala, P. Hajek, V.M. Santalueia, J. Petant and V. Zizler, Fuctional Analysis and Infinite-Dimentional Geometry, Springer- Verlag, New York, 2001.

References III

- K.H. Grochenig, Describing fuctions: Atomic decompositions versus frames, Monatsh. fur Mathematik, 112(1991), 1-41.
- P.K. Jain, S.K. Kaushik and Nisha Gupta, On frame system in Banach spaces, International Journal of Wavelets, multiresolution and information processing (IJWMIP), 7(1)2009,1-7.

References IV

- P.K. Jain, S.K. Kaushik and L.K. Vashist, On perturbation of Banach frames in Banach spaces, International Journal of Wavelets, multiresolution and information processing (IJWMIP),4(3)(2006), 559-565.
- S.K. Kaushik, Nisha Gupta and P.K. Jain, Frames in subspaces in Banach spaces, Bulletin of the Calcutta Mathematical Soc. ,101,(3) 229-234(2009)

References V

- R.H. Lohman and W.J. Stiles, On separability in linear topological spaces, Proc. Amer. Soc. Vol. 42(1), Jan 1974, 236-237.
- I.Singer in Banach Spaces-I. Springer -verlag, New York, 1970.

THANK YOU