Frame System in Banach Spaces

Nisha Gupta

Department of Mathematics
Lakshmi Bai College, Delhi
nishag.81@gmail.com

IWM-2015
A sequence \(\{x_k\}_{k=1}^{\infty} \) in \(\mathcal{H} \) is a frame for \(\mathcal{H} \) if \(\exists A, B > 0 \) such that
\[
A \|x\|^2 \leq \sum_{k=1}^{\infty} |<x, x_k>|^2 \leq B \|x\|^2, \quad \forall x \in \mathcal{H}.
\]
A sequence \(\{x_k\}_{k=1}^{\infty} \) in \(\mathcal{H} \) is a frame for \(\mathcal{H} \) if \(\exists A, B > 0 \) such that

\[
A \|x\|^2 \leq \sum_{k=1}^{\infty} |<x,x_k>|^2 \leq B \|x\|^2, \quad \forall x \in \mathcal{H}.
\]

- \(A \) and \(B \) → frame bounds.
A sequence \(\{x_k\}_{k=1}^{\infty} \) in \(\mathcal{H} \) is a frame for \(\mathcal{H} \) if \(\exists A, B > 0 \) such that

\[
A\|x\|^2 \leq \sum_{k=1}^{\infty} |<x, x_k>|^2 \leq B\|x\|^2, \quad \forall x \in \mathcal{H}.
\]

\(A \) and \(B \) \(\rightarrow \) frame bounds.

For frame \(\{x_n\} \) in \(\mathcal{H} \), \(T : l^2(\mathbb{N}) \rightarrow \mathcal{H} \),

\[
T(\{c_k\}) = \sum_{k=1}^{\infty} c_k x_k.
\]

is pre-frame operator.
The adjoint operator of T, $T^* : \mathcal{H} \rightarrow l^2$

$$T^*(x) = \{ < x, x_k > \}_{k=1}^{\infty}.$$

is known as analysis operator.
• The adjoint operator of T, $T^* : \mathcal{H} \rightarrow l^2$

$$T^*(x) = \{ < x, x_k > \}_{k=1}^\infty.$$

is known as analysis operator.

• Frame operator $S = TT^* : \mathcal{H} \rightarrow \mathcal{H}$ defined as

$$S(x) = \sum_{k=1}^\infty < x, x_k > x_k \quad x \in \mathcal{H}. $$
Let \(\{x_n\} \) be a frame for \(\mathcal{H} \) with frame operator \(S \). Then

\[
x = \sum_{k=1}^{\infty} \langle x, S^{-1}x_k \rangle x_k, \quad x \in \mathcal{H}.
\]
Let \(\{x_n\} \) be a frame for \(\mathcal{H} \) with frame operator \(S \). Then

\[
x = \sum_{k=1}^{\infty} < x, S^{-1}x_k > x_k, \quad x \in \mathcal{H}.
\]

Let \(\{x_n\} \) in \(\mathcal{E} \) and \(\{f_n\} \) in \(\mathcal{E}^* \). Then \((\{f_n\}, \{x_n\})\) is an atomic decomposition of \(\mathcal{E} \) with respect to \(\mathcal{E}_d \), if

(a) \(\{f_n(x)\} \in \mathcal{E}_d, \forall x \in \mathcal{E} \).

(b) \(A\|x\|_E \leq \|\{f_n(x)\}\|_{E_d} \leq B\|x\|_E, \quad x \in \mathcal{E} \)

(c) \(x = \sum_{k=1}^{\infty} f_k(x)x_k, \forall x \in \mathcal{E} \).

\(A, B \rightarrow \) atomic bounds.
Let \(\{f_n\} \) in \(\mathcal{E}^* \) and \(S : \mathcal{E}_d \to \mathcal{E} \). Then \((\{f_n\}, S)\) is Banach frame for \(\mathcal{E} \) w.r.to \(\mathcal{E}_d \) if

(a) \(\{f_n(x)\} \in \mathcal{E}_d \), \(\forall x \in \mathcal{E} \).

(b) \(\|x\|_{\mathcal{E}} \leq \|\{f_n(x)\}\|_{\mathcal{E}_d} \leq B \|x\|_{\mathcal{E}} \), \(x \in \mathcal{E} \).

(c) \(S(f_n(x)) = x \), \(\forall x \in \mathcal{E} \).

A,B \rightarrow \text{frame bounds.}
Let \(\{f_n\} \) in \(\mathcal{E}^* \) and \(S: \mathcal{E}_d \rightarrow \mathcal{E} \). Then \((\{f_n\}, S) \) is Banach frame for \(\mathcal{E} \) w.r.to \(\mathcal{E}_d \) if

(a) \(\{f_n(x)\} \in \mathcal{E}_d, \forall x \in \mathcal{E} \).
Banach Frame

Let \(\{f_n\} \) in \(\mathcal{E}^* \) and \(S : \mathcal{E}_d \rightarrow \mathcal{E} \). Then \((\{f_n\}, S)\) is Banach frame for \(\mathcal{E} \) w.r.t. \(\mathcal{E}_d \) if

(a) \(\{f_n(x)\} \in \mathcal{E}_d, \forall x \in \mathcal{E} \).

(b) \(A\|x\|_\mathcal{E} \leq \|\{f_n(x)\}\|_{\mathcal{E}_d} \leq B\|x\|_\mathcal{E}, \quad x \in \mathcal{E} \).
Let $\{f_n\}$ in \mathcal{E}^* and $S : \mathcal{E}_d \rightarrow \mathcal{E}$. Then $(\{f_n\}, S)$ is Banach frame for \mathcal{E} w.r.to \mathcal{E}_d if

(a) $\{f_n(x)\} \in \mathcal{E}_d, \forall x \in \mathcal{E}$.

(b) $A \|x\|_\mathcal{E} \leq \|\{f_n(x)\}\|_{\mathcal{E}_d} \leq B \|x\|_\mathcal{E}, \quad x \in \mathcal{E}$.

(c) S is bounded linear operator s.t.

$$S(f_n(x)) = x \quad x \in \mathcal{E}.$$

$A, B \rightarrow$ frame bounds.
(i) Tight frame if $A = B$
(i) Tight frame if $A = B$

(ii) Normalized tight frame if $A = B = 1$
(i) Tight frame if $A = B$

(ii) Normalized tight frame if $A = B = 1$

(iii) Exact frame if there exists no reconstruction operator S_0 such that $(\{f_n\}_{n \neq i}, S_0) (i \in \mathbb{N})$ is a Banach frame for \mathcal{E}.
Examples

- For $\mathcal{E} = c_0$ and $\{f_n\}$ in \mathcal{E}^* defined as

 $$f_n(x) = \xi_n, \ (n \in \mathbb{N}) \quad x = \{\xi_n\} \in \mathcal{E}.$$

 Then there exist $\mathcal{E}_d = \{\{f_n(x)\} : x \in \mathcal{E}\}$ with norm

 $$\|\{f_n(x)\}\|_{\mathcal{E}_d} = \|x\|_\mathcal{E}$$

 and $S : \mathcal{E}_d \rightarrow \mathcal{E}$ defined by

 $$S(\{f_n(x)\}) = x, \quad x \in \mathcal{E}.$$

 Thus $(\{f_n\}, S)$ is a Banach frame for \mathcal{E} w. r. to \mathcal{E}_d.

- ℓ^∞/c_0 does not have any Banach frame.
Few Results on Banach Frames

1. If a Banach space \mathcal{E} has an atomic decomposition, then \mathcal{E} has a Banach frame. The converse need not be true.
Few Results on Banach Frames

(1) If a Banach space \mathcal{E} has an atomic decomposition, then \mathcal{E} has a Banach frame. The converse need not be true.

(2) A Banach space with an atomic decomposition is separable. However, the converse need not be true.
Few Results on Banach Frames

(1) If a Banach space E has an atomic decomposition, then E has a Banach frame. The converse need not be true.

(2) A Banach space with an atomic decomposition is separable. However, the converse need not be true.

(3) Every separable Banach space has a normalized tight and exact Banach frame.
Few Results on Banach Frames

(1) If a Banach space E has an atomic decomposition, then E has a Banach frame. The converse need not be true.

(2) A Banach space with an atomic decomposition is separable. However, the converse need not be true.

(3) Every separable Banach space has a normalized tight and exact Banach frame.

(4) Let E be a Banach space having a Banach frame. Then, E has a normalized tight and exact Banach frame.
Frames in Subspaces of Banach Spaces

- Every Banach space E has a closed subspace having a Banach frame.
Frames in Subspaces of Banach Spaces

- Every Banach space \mathcal{E} has a closed subspace having a Banach frame.
- Let $(\{f_n\}, \mathcal{S})(\{f_n\} \subset \mathcal{E}^*, \mathcal{S}: \mathcal{E}_d \to \mathcal{E})$ be a Banach frame for \mathcal{E} and \mathcal{G} be a closed subspace of \mathcal{E}. Then, $\exists \mathcal{G}_d$ and $T: \mathcal{G}_d \to \mathcal{G}$ such that $(\{f_n|_\mathcal{G}\}, T)$ is a Banach frame for \mathcal{G} w.r.to \mathcal{G}_d.
Frames in Subspaces of Banach Spaces

- Every Banach space \(\mathcal{E} \) has a closed subspace having a Banach frame.
- Let \((\{f_n\}, S)(\{f_n\} \subset \mathcal{E}^*, S : \mathcal{E}_d \to \mathcal{E})\) be a Banach frame for \(\mathcal{E} \) and \(\mathcal{G} \) be a closed subspace of \(\mathcal{E} \). Then, \(\exists \mathcal{G}_d \) and \(T : \mathcal{G}_d \to \mathcal{G} \) such that \((\{f_n|_\mathcal{G}\}, T)\) is a Banach frame for \(\mathcal{G} \) w.r.t \(\mathcal{G}_d \).
- Let \((\{f_n\}, S)(\{f_n\} \subset \mathcal{E}^*, S : \mathcal{E}_d \to \mathcal{E})\) be a Banach frame for \(\mathcal{E} \). Then, for every \(\{n_k\} \), \(\exists \) a closed subspace \(\mathcal{G} \) of \(\mathcal{E} \) and \(T : \mathcal{G}_d \to \mathcal{G} \) such that \((\{f_{n_k}|_\mathcal{G}\}, T)\) is Banach frame for \(\mathcal{G} \) w.r.t \(\mathcal{G}_d \).
Frames in Subspaces of Banach Spaces

Let \(\{f_n\} S(\{f_n\} \subset \mathcal{E}^*, S: \mathcal{E} \to \mathcal{E}) \) be a exact Banach frame for \(\mathcal{E} \). Then, for every \(\{n_k\} \), \(\exists \) a closed subspace \(\mathcal{G} \) of \(\mathcal{E} \) and \(T: \mathcal{G}_d \to \mathcal{G} \) such that \((\{f_{n_k}|_{\mathcal{G}}\} T) \) is exact Banach frame for \(\mathcal{G} \) w.r.to \(\mathcal{G}_d \).
Frames in Subspaces of Banach Spaces

- Let \((\{f_n\}_S)(\{f_n\}_E E^*, S: E_d \rightarrow E) \) be a exact Banach frame for \(E \). Then, for every \(\{n_k\}_E \), \(\exists \) a closed subspace \(G \) of \(E \) and \(T: G_d \rightarrow G \) such that \((\{f_{n_k}|_G\}_T) \) is exact Banach frame for \(G \) w.r.to \(G_d \).

- Let \(G \subset E \) such that \(G \) and \(E/G \) have Banach frames. Then \(E \) also have a Banach Frame.
For $\mathcal{E} = \ell^\infty$ and $\mathcal{G} = c_0$. \mathcal{E} and \mathcal{G} have Banach frame, however \mathcal{E}/\mathcal{G} has no Banach frame.
Let \((\{f_n\}, S)(\{f_n\} \subset \mathcal{E}^*, S : \mathcal{E}_d \to \mathcal{E})\) is a Banach frame for \(\mathcal{E}\) w.r.to \(\mathcal{E}_d\). Let \(\{\phi_n\}\) in \(\mathcal{E}^{**}\) be such that

\[
\phi_i(f_j) = \delta_{i,j}, \quad i, j \in \mathcal{N}.
\]
Let \((\{f_n\}, S)(\{f_n\} \subset \mathcal{E}^*, S : \mathcal{E}_d \to \mathcal{E})\) is a Banach frame for \(\mathcal{E}\) w.r.to \(\mathcal{E}_d\). Let \(\{\phi_n\}\) in \(\mathcal{E}^{**}\) be such that

\[
\phi_i(f_j) = \delta_{i,j}, \quad i, j \in \mathbb{N}.
\]

If \(\exists \mathcal{E}_d^*\) and \(\mathcal{T} : \mathcal{E}_d^{**} \to \mathcal{E}^{**}\) such that \((\{\phi_n\}, \mathcal{T})\) is a Banach frame for \(\mathcal{E}^{**}\) w.r.to \(\mathcal{E}_d^{**}\), then

\[
((\{f_n\}, S), (\{\phi_n\}, \mathcal{T}))
\]

is a Banach frame system for \(\mathcal{E}\).

\((\{\phi_n\}, \mathcal{T})\) is called an admissible Banach frame to

\((\{f_n\}, S)\).
Examples of Banach frame System

Let $\mathcal{E} = l^1$ and $\{f_n\} \subset \mathcal{E}^*$. Define $\{g_n\} \subset \mathcal{E}^{**}$ by

$$g_n(x) = \xi_n, \quad x = \{\xi_n\} \in \ell^\infty, \ n \in \mathbb{N}.$$

Let $\mathcal{E}_d = \{\{f_n(x)\} : x \in \mathcal{E}\}$ and $(\mathcal{E}^*)_d = \{\{g_n(f) : f \in \mathcal{E}^*\}$. Then \mathcal{E}_d and $(\mathcal{E}^*)_d$ are associated Banach space with norms given by $\|\{f_n(x)\}\|_{\mathcal{E}_d} = \|x\|_{\mathcal{E}}, \ x \in \mathcal{E}$ and $\|\{g_n(f)\}\|_{(\mathcal{E}^*)_d} = \|f\|_{\mathcal{E}^*}, \ f \in \mathcal{E}^*$ respectively. Define $S : \mathcal{E}_d \to \mathcal{E}$ by $S(\{f_n(x)\}) = x, \ x \in \mathcal{E}$ and $T : (\mathcal{E}^*)_d \to \mathcal{E}^*$ by $T(\{g_n(f)\}) = f, \ f \in \mathcal{E}^*$. Then $((\{f_n\}, S), (\{g_n\}, T))$ is a Banach frame system for \mathcal{E}.
Examples of Banach frame System

\(\ell^\infty \) has no Banach frame system however it possesses a Banach frame.
Towards Uniqueness

As \([f_n] \neq \mathcal{E}^*\), let \(e \in \mathcal{E}^* \setminus [f_n]\), \(\exists g_0 \in \mathcal{E}^{**}\) such that

\[g_0(e) \neq 0\]

and

\[g_0([f_n]) = 0.\]
Towards Uniqueness

As \([f_n] \neq \mathcal{E}^*\), let \(e \in \mathcal{E}^* \setminus [f_n]\), \(\exists g_0 \in \mathcal{E}^{**}\) such that

\[g_0(e) \neq 0 \]

and

\[g_0([f_n]) = 0. \]

Define \(\{\phi_n\} \subset \mathcal{E}^{**}\) by

\[\phi_1 = g_1 - g_0, \phi_n = g_n, n = 2, 3, 4, .. \]
Towards Uniqueness

As \([f_n] \neq \mathcal{E}^*\), let \(e \in \mathcal{E}^* \setminus [f_n]\), \(\exists g_0 \in \mathcal{E}^{**}\) such that

\[g_0(e) \neq 0 \]

and

\[g_0([f_n]) = 0. \]

Define \(\{\phi_n\} \subset \mathcal{E}^{**}\) by

\[\phi_1 = g_1 - g_0, \phi_n = g_n, n = 2, 3, 4, .. \]

Then \(\{\phi_n\}, T_0\) is another admissible Banach frame to

\(\{f_n\}, S\), where

\[T_0 : (\mathcal{E}^*)_d \to \mathcal{E}^* \]

by \(T_0(\{g_n(f)\}) = f, f \in \mathcal{E}^*\)
Theorem

Let \(((\{f_n\}, S), (\{g_n\}, T))\) be a Banach frame system for \(\mathcal{E}\). Then, \((\{g_n\}, T)\) is the unique admissible Banach frame to \((\{f_n\}, S)\) if and only if \([f_n] = \mathcal{E}^*\)
Theorems

Theorem

Let $((\{f_n\}, S), (\{g_n\}, T))$ be a Banach frame system for E. Then, $(\{g_n\}, T)$ is the unique admissible Banach frame to $(\{f_n\}, S)$ if and only if $[f_n] = E^*$.

Theorem

If $(\{f_n\}, S)$ is an exact Banach frame for E such that

$$\bigcap_{n=1}^{\infty} \left[f_i \right]_{i=n+1}^{\infty} = \{0\}.$$

Then, E has a Banach frame system.
Theorem

If \(((\{f_n\}, S), (\{\phi_n\}, T))\) is a Banach frame system for \(E\) such that each \(\phi_n\) is weak\(^*\) continuous, then

\[
\bigcap_{n=1}^{\infty} [f_i]_{i=n+1}^\infty = \{0\}.
\]
Theorem

If \(((\{f_n\}, S), (\{\phi_n\}, T))\) is a Banach frame system for \(E\) such that each \(\phi_n\) is weak* continuous, then

\[
\bigcap_{n=1}^{\infty} \overline{\{f_i\}_{i=n+1}} = \{0\}.
\]

Theorem

If \(E^*\) has a Banach frame \((\{\phi_n\}, T)\), where \(\phi_n\) is weak* continuous for each \(n \in \mathbb{N}\), then \(E\) has a Banach frame system.

THANK YOU