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1 First order differential relations

A first order Ordinary Differential Relation for maps x : I → Rq, can be
viewed as a differential inclusion of the form:

x ′(t) ∈ F (t, x(t)), for t ∈ I , (1)

where t 7→ F (t, x(t)) is a set valued map for subsets F (t, x(t)) in Rq for
each t ∈ I .
The problem is to find a solution to the above differential inclusion. The
solutions that are of interest may be of different nature: To analysts a
Lipschitz map or more generally an absolutely continuous map (which
implies differentiability almost everywhere) satisfying the above equation
is a solution; on the other hand topologists are interested in solutions
that are at least C 1-regular.
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2 Lipshitz Condition

The work on the above problem in Optimal Control Theory goes back to
1960’s. In 1967, A. F. Filippov gave a sufficient condition for the
existence of a solution to the above differential inclusion which is known
as Relaxation Theorem.

Definition
A set valued function F defined on a subset C of Rq is said to be
Lipschitzean with constant k if

dH(F (x),F (y)) ≤ k‖x − y‖ for all x , y ∈ C ,

where dH is the Hausdorff distance on subsets on Rq.

Recall that the Hausdorff distance between two compact subsets A,B in
a metric space (X , d) is the infimum of all real r > 0 for which the closed
r -neighborhood of any x in A contains at least one point y of B and vice
versa.
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3 Philippov’s Theorem

The following is a simplified version of Filippov’s Theorem :

Theorem
Let F be a set valued map defined on a closed ball B = B(a; r) in Rq

with values compact subsets of Rq such that F is a Lipshitzian with
constant k. Let I = [−T ,T ] and x : I → Int B be an absolutely
continuous function such that

x ′(t) ∈ Conv F (x(t)) for all t ∈ I ; x(0) = a. (2)

Let ε > 0. Then there exists an absolutely continuous function y : I → B
such that

y ′(t) ∈ F (y(t)); y(0) = a,

and such that ‖x(t)− y(t)‖ < ε.
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4 Remarks

I The theorem says that under Lipschitzean condition on F the
problem may be substantially simplified when F does not take
convex set values.

I However, if F is a convex set valued function then convex hull
construction does not enlarge the solution space and the situation is
beyond the scope of this result.

I When q > 1, the solution to this problem is not unique, in contrast
with the initial value problem for functions R→ R.
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5 Piecewise linear solutions

Consider the curve x(t) = (t, 0) in R2 so that x ′(t) = (1, 0) for all t.
Now take A = {(1, 1), (1,−1)}. Then it is easy to obtain a piecewise
linear function y(t) in an arbitrary neighbourhood of x(t) such that
y ′(t) ∈ F for all t.

Lemma
Let ε > 0. If 0 ∈ Conv A, then there exists a piecewise linear map
f : I → B(0; ε) ⊂ Rq such that f ′(t) ∈ A for all t ∈ I .
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Proof

By the given hypothesis, there exists a path γ : I → A such that∫ 1

0
γ(t) dt = 0. For each n, define a function fn : I → Rn by

fn(t) =
∫ t

0
γn(s) ds,

where γn is the n-fold uniform product of γ with itself. Clearly f ′n(t) ∈ A
for all t ∈ I . If k/n ≤ t < (k + 1)/n then

fn(t) =

∫ t

0

γn(s) ds =
k−1∑
j=1

∫ (j+1)/n

j/n

γ(ns − j) ds +

∫ t

k/n

γ(ns − k) ds

By a change of variable,
∫ (j+1)/n

j/n
γ(ns − j) ds = 1

n

∫ 1

0
γ(t) dt = 0 and

hence fn(t) = 1
n

∫ nt−k
0

γ(s) ds. Therefore, fn → 0 with respect to the
C 0-norm.
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6 Example-I

The topological interest lies in the C 1-smooth solutions of the differential
inclusion

x ′(t) ∈ A, for t ∈ I ,

where F is some subset of Rq.

I Connectedness of F is necessary to obtain a C 1 solution.

We modify the previous example in the following way: Let

A = {(1, s) ∈ R2| − ε ≤ s ≤ ε}

Then, A is connected and (1, 0) belongs to the convex hull of A.

I The sinusoidal curve y(t) = (t, ε sin t), t ∈ R, is a desired solution.

I y(t) can be made to lie in an arbitrary neighbourhood of x(t) with
an appropriate choice of ε.
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7 C 1-maps on circle

Lemma
Let A ⊂ Rq and let f : S1 −→ Rq be a C 1 map such that

φ = f ′ : S1 −→ A.

Then 0 belongs to the convex hull of the path-component of A that
receives Im φ.

Proof . Indeed expressing
∫
S1 φ(s) ds as the limit of Riemann sums we get

0 =

∫
S1

φ(s) ds = lim
n→∞

n∑
k=1

2π

n
φ(sk) = 2π lim

n→∞

1

n

n∑
k=1

φ(sk),

where 1
n

∑n
k=1 φ(sk) ∈ Conv (Imφ) for each n. Thus 0 ∈ Conv A.
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8 Example-II

The converse of the above is not in general true. To see this consider

A = {(x1, x2) ∈ R2 : x2
1 + x2

2 = 1, x1 ≥ 0},

so that 0 ∈ Conv A.
If possible, let f : S1 −→ R2 be a C 1 map such that φ = df

ds maps S1

into A. Hence
∫
S1 φ(s) ds = 0. Writing φ = (φ1, φ2) we get∫

S1 φ1(s) ds = 0 and
∫
S1 φ2(s) ds = 0.

Since φ1 ≥ 0 we conclude from the first integral that

φ(x) = (0, 1) for all x or φ(x) = (0,−1) for all x .

However, this contradicts
∫
S1 φ2(s) ds = 0.
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9 One-dimensional convex integration

Theorem
Let A ⊂ Rq be such that

I A is connected and

I 0 belongs to the interior of the convex hull of A.

Then there exists a C 1 map f : S1 −→ Rq such that

df
ds (S1) ⊂ A.

Moreover, Im f can be made to lie in an arbitrary small neighbourhood of
0.
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10 Application
Let h1 =

∑q
i=1 y2

i and h2 =
∑q

i=1 λ
2
i y2

i be two Euclidean metrics on Rq,
q ≥ 4. Let

g1 = ds2 and g2 = c2ds2

be two Riemannian metrics on S1, where s is the arc-length function on
S1. If f : S1 −→ Rq is a C 1-immersion such that f ∗hi = gi for i = 1, 2
then

‖ dfds ‖1 = 1 and ‖ dfds ‖2 = c ,

where ‖.‖i denote the norm relative to the metric hi , i = 1, 2.
This implies that df

ds ∈ A, where A is given by

A = {(y1, . . . , yq) ∈ Rq :
∑

y2
i = 1 and

∑
λ2i y2

i = c2}.

If r±(c2h1 − h2) ≥ 2, A is connected and the interior of the convex hull
of A contains the origin. Thus, by the above proposition, there exists an
immersion f : S1 −→ Rq such that f ∗hi = gi , i = 1, 2 when
r±(c2h1 − h2) ≥ 2.
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There does not exist any such isometric immersion if q ≤ 3. For, if there
is a map f : S1 −→ Rq such that f ∗h1 = ds2 = f ∗h2, then
f ∗(h1 − h2) = 0. If h1 − h2 is a non-degenerate indefinite form then
either r+ = 1, r− = 2 or r+ = 1, r− = 2. In either of these two cases, A is
a disjoint union of two circles none of which contains the origin in its
convex hull, thereby ruling out the existence of C 1-immersion with the
desired isometry property.
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11. General framework

More generally, let Ã be an open subset of R× Rq × Rq. For each
(t, x) ∈ R× Rq, define

A(t, x) = {y ∈ Rq|(t, x , y) ∈ Ã}.

Suppose that there exists a C 1 function f0 : I → Rq and a C 0 function
ϕ0 : I → Rq such that

I (t, f0(t), ϕ0(t)) ∈ Ã for all t ∈ I and

I f ′0 (t) ∈ Conv A(t, f0(t)) for all t ∈ I .

If A(t, f0(t)) is path-connected for all t ∈ I , then there exists a
C 1-function f : I → Rq arbitrarily C 0-close to f0 such that

I (t, f (t), f ′(t)) ∈ Ã and

I f coincides with f0 on the boundary points.

Special Case: Take Ã = R× Rq × A and f0 = 0.
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12 Convex integration: Language of jets
This theory was developed by Gromov in the early 70’s for the first order
Partial differential relation/equation on manifolds.

Definition
A first order partial differential relation for functions f : Rn −→ Rq is a
subset R in the jet space J1(Rn,Rq).

We shall transform this into a differential inclusion in one variable.
We split Rn as Rn−1 × R. Denote the coordinates on Rn−1 by
x1, . . . , xn−1 and the coordinate on the second factor R by t.
Writing the partial derivatives of a given C 1-function f : Rn −→ Rq as
∂i f (x) for the xi -coordinates, we express the derivative as follows:

Jf (x) = (J⊥f (x), ∂t f (x)),

where

J⊥f (x) = (x , f (x), ∂1f (x), . . . , ∂n−1f (x)) ∈ J⊥(Rn,Rq) = Rn × Rnq.

Let p⊥ : J1(Rn,Rq)→ J⊥(Rn,Rq) denote the canonical projection.
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13 C 1-solutions of open relations

For every b ∈ J⊥(Rn−1 × R,Rq) the fibre over b in J1(Rn,Rq) is a
q-dimensional affine space. Define

Rb = {α ∈ J1(Rn,Rq) : α = (b, v) ∈ R} ∼= {v ∈ Rq : (b, v) ∈ R}

Theorem
Let R be a subset of J1(Rn,Rq) satisfying the following conditions:

I R is open;

I Rb is connected for all b ∈ J⊥(Rn,Rq);

I Convex hull of Rb is equal to the principal subspace over b for all
b ∈ J⊥(Rn,Rq).

If there are functions f , ϕ : Rn → Rq such that (j⊥f , ϕ) is a section of R
then f can be C⊥ approximated by a C 1 solution of R.
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14 Open ample relations

Let R ⊂ J1(Rn,Rq) be a first order relation.

Definition
R is said to be ample in the coordinate direction t if the convex hull of
each pathcomponent of Rb is all of J1

b (Rn,Rq). R is said to be ample if
it is ample in each coordinate direction.

Theorem
Let R ⊂ J1(Rn,Rq) be an open relation which is ample in each
coordinate direction. Then R satisfies the (relative) h-principle.

Example: Smale-Hirsch immersion theorem.
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15 Applications

Theorem
(Geiges and Gonzalo) Let M be a closed orientable 3-manifold. Then M
admits a triple of pointwise independent contact forms α1, α2, α3 with
pointwise linearly independent Reeb vector fields.

Theorem
(McDuff) Given M with dim M = 2n + 1 and ω ∈ Ω2(M) with ωn 6= 0
there exits a ω′ ∈ Ω2(M) such that dω′ = 0 and (ω′)n 6= 0. Moreover,
one may prescribe the cohomology class of ω′.

Theorem
(McDuff) Given M with dim M = 2n and differential forms α ∈ Ω1(M)
and β ∈ Ω2(M) with α ∧ βn−1 there exists a 1-form α′ such that
α′ ∧ (dα′)n−1 6= 0.
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18. C 1-solutions of closed relations

Theorem
Let R be a subset of J1(Rn,Rq) satisfying the following conditions:

I R → J⊥ is a fibre bundle;

I Rb is connected and locally path-connected for all b ∈ J⊥(Rn,Rq);

I Rb is nowhere flat.

If there are functions f , ϕ : Rn → Rq such that

I (j⊥f , ϕ) is a section of R and

I Jf (x) lies in the interior of the convex hull Conv(Rb(x)) for all

x ∈ Rn, where b(x) = j⊥f (x).

then f can be C⊥ approximated by a C 1 solution of R.
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19 PDE as relations

A first order partial differential equation for functions f : Rn −→ Rq is of
the form:

Ψ(x , f (x), Jf (x)) = 0, (3)

where Ψ is a vector valued continuous map.

We can now write the equation (3) as an inclusion of the form

∂t f (x) ∈ R(j⊥f (x)),

where x 7→ R(j⊥f (x)) is now a set valued map with values subsets of Rq

for each x ∈ Rn. The set function R can be defined as

R(j⊥f (x)) = {v ∈ Rq : Ψ(j⊥f (x), v) = 0}.
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20 Applications to PDE
Consider the following PDE for functions f = (f1, f2) : R2 −→ R2:

Φ1( ∂f1
∂u1
, ∂f2
∂u1

) = Φ2(u1, u2, f1, f2,
∂f1
∂u2
, ∂f2
∂u2

),

where Φ1 : R2 −→ R is real analytic function without critical point and
Φ2 : R6 −→ R is any continuous functions.
Take τ = {u1 = const.}. Then we can rewrite the above equation as

Φ1( ∂f1
∂u1
, ∂f2
∂u1

) = Φ2(j⊥f ).

Hence f is a solution of the relation R given by

R = {(b, α1(x), α2(x)) : Φ1(α1(x), α2(x)) = Φ2(b)}.

Thus the sets Rb are the level sets of the function Φ1.
Consider the function Φ1(x1, x2) = x1 + x3

2 .
I Φ−11 (a), a ∈ R, is a connected curve in R2

⇒ there exists a section J⊥ −→ R.

I Convex hull of Φ−11 (a) is all of R2 for all a ∈ R2.

The previous theorem implies that the solutions of the above PDE are
dense in the space of C 0-maps R2 −→ R2.
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16 Nash-Kuiper theorem

The following theorem can be obtained by an application of convex
integration.

Theorem
(M, g) be a Riemannian manifold of dimension n. Let h denote the
canonical metric on Rq. If q > n and M admits a smooth immersion in
Rq, then there exists a C 1-immersion f : M → Rq such that f ∗h = g.
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