Method of Convex Integration and solutions to Differential Relations.

Mahuya Datta

Statistics and Mathematics Unit Indian Statistical Institute, Kolkata

mahuya@isical.ac.in

March 16, 2015

< ロ > (四 > (四 > (三 > (三 >))) 문 (-)

contents

Filippov's Relaxation Theorem.

One dimensional Convex Integration

Convex Integration of open Relations

Convex Integration of closed Relations

References

1 First order differential relations

A first order Ordinary Differential Relation for maps $x : I \to \mathbb{R}^q$, can be viewed as a *differential inclusion* of the form:

$$x'(t) \in F(t, x(t)), \text{ for } t \in I,$$
(1)

イロト イヨト イヨト イヨト

where $t \mapsto F(t, x(t))$ is a set valued map for subsets F(t, x(t)) in \mathbb{R}^q for each $t \in I$.

The problem is to find a solution to the above differential inclusion. The solutions that are of interest may be of different nature: To analysts a *Lipschitz map* or more generally an *absolutely continuous map* (which implies differentiability almost everywhere) satisfying the above equation is a solution; on the other hand topologists are interested in solutions that are at least C^1 -regular.

2 Lipshitz Condition

The work on the above problem in Optimal Control Theory goes back to 1960's. In 1967, A. F. Filippov gave a sufficient condition for the existence of a solution to the above differential inclusion which is known as *Relaxation Theorem*.

Definition

A set valued function F defined on a subset C of \mathbb{R}^q is said to be Lipschitzean with constant k if

$$d_H(F(x), F(y)) \le k \|x - y\|$$
 for all $x, y \in C$,

where d_H is the Hausdorff distance on subsets on \mathbb{R}^q .

Recall that the Hausdorff distance between two compact subsets A, B in a metric space (X, d) is the infimum of all real r > 0 for which the closed r-neighborhood of any x in A contains at least one point y of B and vice versa.

3 Philippov's Theorem

The following is a simplified version of Filippov's Theorem :

Theorem

Let F be a set valued map defined on a closed ball B = B(a; r) in \mathbb{R}^q with values compact subsets of \mathbb{R}^q such that F is a Lipshitzian with constant k. Let I = [-T, T] and $x : I \to Int B$ be an absolutely continuous function such that

$$x'(t) \in Conv F(x(t))$$
 for all $t \in I$; $x(0) = a$. (2)

Let $\varepsilon > 0.$ Then there exists an absolutely continuous function $y: I \to B$ such that

$$y'(t) \in F(y(t)); \ y(0) = a,$$

and such that $||x(t) - y(t)|| < \varepsilon$.

イロト イヨト イヨト イヨト

4 Remarks

- The theorem says that under Lipschitzean condition on F the problem may be substantially simplified when F does not take convex set values.
- However, if F is a convex set valued function then convex hull construction does not enlarge the solution space and the situation is beyond the scope of this result.
- When q > 1, the solution to this problem is not unique, in contrast with the initial value problem for functions ℝ → ℝ.

(日) (同) (三) (三)

5 Piecewise linear solutions

Consider the curve x(t) = (t, 0) in \mathbb{R}^2 so that x'(t) = (1, 0) for all t. Now take $A = \{(1, 1), (1, -1)\}$. Then it is easy to obtain a *piecewise linear* function y(t) in an arbitrary neighbourhood of x(t) such that $y'(t) \in F$ for all t.

Lemma

Let $\varepsilon > 0$. If $0 \in Conv A$, then there exists a piecewise linear map $f : I \to B(0; \varepsilon) \subset \mathbb{R}^q$ such that $f'(t) \in A$ for all $t \in I$.

(日) (同) (三) (三)

Proof

By the given hypothesis, there exists a path $\gamma : I \to A$ such that $\int_0^1 \gamma(t) dt = 0$. For each *n*, define a function $f_n : I \to \mathbb{R}^n$ by

$$f_n(t) = \int_0^t \gamma^n(s) \, ds$$

where γ^n is the *n*-fold uniform product of γ with itself. Clearly $f'_n(t) \in A$ for all $t \in I$. If $k/n \le t < (k+1)/n$ then

$$f_n(t) = \int_0^t \gamma^n(s) \, ds = \sum_{j=1}^{k-1} \int_{j/n}^{(j+1)/n} \gamma(ns-j) \, ds + \int_{k/n}^t \gamma(ns-k) \, ds$$

By a change of variable, $\int_{j/n}^{(j+1)/n} \gamma(ns-j) ds = \frac{1}{n} \int_0^1 \gamma(t) dt = 0$ and hence $f_n(t) = \frac{1}{n} \int_0^{nt-k} \gamma(s) ds$. Therefore, $f_n \to 0$ with respect to the C^0 -norm.

6 Example-I

The topological interest lies in the C^1 -smooth solutions of the differential inclusion

$$x'(t) \in A$$
, for $t \in I$,

where *F* is some subset of \mathbb{R}^q .

• Connectedness of F is necessary to obtain a C^1 solution.

We modify the previous example in the following way: Let

$${\sf A}=\{(1,s)\in \mathbb{R}^2|-arepsilon\leq s\leq arepsilon\}$$

(日) (同) (三) (三)

6 Example-I

The topological interest lies in the C^1 -smooth solutions of the differential inclusion

$$x'(t) \in A$$
, for $t \in I$,

where *F* is some subset of \mathbb{R}^q .

• Connectedness of F is necessary to obtain a C^1 solution.

We modify the previous example in the following way: Let

$${\sf A}=\{(1,s)\in \mathbb{R}^2|-arepsilon\leq s\leq arepsilon\}$$

Then, A is connected and (1,0) belongs to the convex hull of A.

- The sinusoidal curve $y(t) = (t, \varepsilon \sin t)$, $t \in \mathbb{R}$, is a desired solution.
- y(t) can be made to lie in an arbitrary neighbourhood of x(t) with an appropriate choice of ε.

イロト イヨト イヨト イヨト

7 C^1 -maps on circle

Lemma

Let $A \subset \mathbb{R}^q$ and let $f : S^1 \longrightarrow \mathbb{R}^q$ be a C^1 map such that

$$\phi = f' : S^1 \longrightarrow A.$$

Then 0 belongs to the convex hull of the path-component of A that receives Im ϕ .

Proof . Indeed expressing $\int_{S^1} \phi(s) \, ds$ as the limit of Riemann sums we get

$$0=\int_{\mathcal{S}^1}\phi(s)\,ds=\lim_{n\to\infty}\sum_{k=1}^n\frac{2\pi}{n}\phi(s_k)=2\pi\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\phi(s_k),$$

where $\frac{1}{n} \sum_{k=1}^{n} \phi(s_k) \in \text{Conv}(\text{Im}\phi)$ for each *n*. Thus $0 \in \text{Conv} A$.

8 Example-II

The converse of the above is not in general true. To see this consider

$$A = \{ (x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1, x_1 \ge 0 \},\$$

so that $0 \in \text{Conv} A$. If possible, let $f : S^1 \longrightarrow \mathbb{R}^2$ be a C^1 map such that $\phi = \frac{df}{ds}$ maps S^1 into A. Hence $\int_{S^1} \phi(s) ds = 0$. Writing $\phi = (\phi_1, \phi_2)$ we get

$$\int_{S^1} \phi_1(s) \, ds = 0$$
 and $\int_{S^1} \phi_2(s) \, ds = 0.$

Since $\phi_1 \geq 0$ we conclude from the first integral that

$$\phi(x) = (0,1)$$
 for all x or $\phi(x) = (0,-1)$ for all x.

However, this contradicts $\int_{S^1} \phi_2(s) \, ds = 0$.

イロト イヨト イヨト イヨト

9 One-dimensional convex integration

Theorem Let $A \subset \mathbb{R}^q$ be such that

- A is connected and
- O belongs to the interior of the convex hull of A.

Then there exists a C^1 map $f: S^1 \longrightarrow \mathbb{R}^q$ such that

 $\frac{df}{ds}(S^1) \subset A.$

Moreover, Im f can be made to lie in an arbitrary small neighbourhood of 0.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

10 Application

Let $h_1 = \sum_{i=1}^q y_i^2$ and $h_2 = \sum_{i=1}^q \lambda_i^2 y_i^2$ be two Euclidean metrics on \mathbb{R}^q , $q \ge 4$. Let

$$g_1 = ds^2$$
 and $g_2 = c^2 ds^2$

be two Riemannian metrics on S^1 , where *s* is the arc-length function on S^1 . If $f: S^1 \longrightarrow \mathbb{R}^q$ is a C^1 -immersion such that $f^*h_i = g_i$ for i = 1, 2 then

$$\|rac{df}{ds}\|_1=1$$
 and $\|rac{df}{ds}\|_2=c$,

where $\|.\|_i$ denote the norm relative to the metric h_i , i = 1, 2. This implies that $\frac{df}{ds} \in A$, where A is given by

$$A = \{(y_1, \ldots, y_q) \in \mathbb{R}^q : \sum y_i^2 = 1 \text{ and } \sum \lambda_i^2 y_i^2 = c^2\}.$$

If $r_{\pm}(c^2h_1 - h_2) \ge 2$, *A* is connected and the interior of the convex hull of *A* contains the origin. Thus, by the above proposition, there exists an immersion $f: S^1 \longrightarrow \mathbb{R}^q$ such that $f^*h_i = g_i, i = 1, 2$ when $r_{\pm}(c^2h_1 - h_2) \ge 2$.

M. Datta

There does not exist any such isometric immersion if $q \leq 3$. For, if there is a map $f: S^1 \longrightarrow \mathbb{R}^q$ such that $f^*h_1 = ds^2 = f^*h_2$, then $f^*(h_1 - h_2) = 0$. If $h_1 - h_2$ is a non-degenerate indefinite form then either $r_+ = 1, r_- = 2$ or $r_+ = 1, r_- = 2$. In either of these two cases, A is a disjoint union of two circles none of which contains the origin in its convex hull, thereby ruling out the existence of C^1 -immersion with the desired isometry property.

(日) (同) (三) (三)

11. General framework

More generally, let \tilde{A} be an *open* subset of $\mathbb{R} \times \mathbb{R}^q \times \mathbb{R}^q$. For each $(t, x) \in \mathbb{R} \times \mathbb{R}^q$, define

$$A(t,x) = \{y \in \mathbb{R}^q | (t,x,y) \in \tilde{A}\}.$$

Suppose that there exists a C^1 function $f_0: I \to \mathbb{R}^q$ and a C^0 function $\varphi_0: I \to \mathbb{R}^q$ such that

- $(t, f_0(t), \varphi_0(t)) \in \tilde{A}$ for all $t \in I$ and
- $f'_0(t) \in \text{Conv } A(t, f_0(t)) \text{ for all } t \in I.$

If $A(t, f_0(t))$ is path-connected for all $t \in I$, then there exists a C^1 -function $f: I \to R^q$ arbitrarily C^0 -close to f_0 such that

• $(t, f(t), f'(t)) \in \tilde{A}$ and

• f coincides with f_0 on the boundary points.

Special Case: Take $\tilde{A} = \mathbb{R} \times \mathbb{R}^q \times A$ and $f_0 = 0$.

This theory was developed by Gromov in the early 70's for the first order Partial differential relation/equation on manifolds.

This theory was developed by Gromov in the early 70's for the first order Partial differential relation/equation on manifolds.

Definition

A first order partial differential relation for functions $f : \mathbb{R}^n \longrightarrow \mathbb{R}^q$ is a subset \mathcal{R} in the jet space $J^1(\mathbb{R}^n, \mathbb{R}^q)$.

This theory was developed by Gromov in the early 70's for the first order Partial differential relation/equation on manifolds.

Definition

A first order partial differential relation for functions $f : \mathbb{R}^n \longrightarrow \mathbb{R}^q$ is a subset \mathcal{R} in the jet space $J^1(\mathbb{R}^n, \mathbb{R}^q)$.

We shall transform this into a differential inclusion in one variable.

(日) (同) (三) (三)

This theory was developed by Gromov in the early 70's for the first order Partial differential relation/equation on manifolds.

Definition

A first order partial differential relation for functions $f : \mathbb{R}^n \longrightarrow \mathbb{R}^q$ is a subset \mathcal{R} in the jet space $J^1(\mathbb{R}^n, \mathbb{R}^q)$.

We shall transform this into a differential inclusion in one variable. We split \mathbb{R}^n as $\mathbb{R}^{n-1} \times \mathbb{R}$. Denote the coordinates on \mathbb{R}^{n-1} by x_1, \ldots, x_{n-1} and the coordinate on the second factor \mathbb{R} by t.

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

This theory was developed by Gromov in the early 70's for the first order Partial differential relation/equation on manifolds.

Definition

A first order partial differential relation for functions $f : \mathbb{R}^n \longrightarrow \mathbb{R}^q$ is a subset \mathcal{R} in the jet space $J^1(\mathbb{R}^n, \mathbb{R}^q)$.

We shall transform this into a differential inclusion in one variable. We split \mathbb{R}^n as $\mathbb{R}^{n-1} \times \mathbb{R}$. Denote the coordinates on \mathbb{R}^{n-1} by x_1, \ldots, x_{n-1} and the coordinate on the second factor \mathbb{R} by t. Writing the partial derivatives of a given C^1 -function $f : \mathbb{R}^n \longrightarrow \mathbb{R}^q$ as $\partial_i f(x)$ for the x_i -coordinates, we express the derivative as follows:

$$J_f(x) = (J_f^{\perp}(x), \partial_t f(x)),$$

where

$$J_f^{\perp}(x) = (x, f(x), \partial_1 f(x), \dots, \partial_{n-1} f(x)) \in J^{\perp}(\mathbb{R}^n, \mathbb{R}^q) = \mathbb{R}^n \times \mathbb{R}^{nq}.$$

Let $p^{\perp}: J^1(\mathbb{R}^n, \mathbb{R}^q) \to J^{\perp}(\mathbb{R}^n, \mathbb{R}^q)$ denote the canonical projection.

13 C^1 -solutions of open relations

For every $b \in J^{\perp}(\mathbb{R}^{n-1} \times \mathbb{R}, \mathbb{R}^q)$ the fibre over b in $J^1(\mathbb{R}^n, \mathbb{R}^q)$ is a q-dimensional affine space. Define

$$\mathcal{R}_{b} = \{ \alpha \in J^{1}(\mathbb{R}^{n}, \mathbb{R}^{q}) : \alpha = (b, v) \in \mathcal{R} \} \cong \{ v \in \mathbb{R}^{q} : (b, v) \in \mathcal{R} \}$$

13 C^1 -solutions of open relations

For every $b \in J^{\perp}(\mathbb{R}^{n-1} \times \mathbb{R}, \mathbb{R}^q)$ the fibre over b in $J^1(\mathbb{R}^n, \mathbb{R}^q)$ is a q-dimensional affine space. Define

$$\mathcal{R}_{b} = \{ \alpha \in J^{1}(\mathbb{R}^{n}, \mathbb{R}^{q}) : \alpha = (b, v) \in \mathcal{R} \} \cong \{ v \in \mathbb{R}^{q} : (b, v) \in \mathcal{R} \}$$

Theorem

Let \mathcal{R} be a subset of $J^1(\mathbb{R}^n, \mathbb{R}^q)$ satisfying the following conditions:

- $\blacktriangleright \mathcal{R}$ is open;
- \mathcal{R}_b is connected for all $b \in J^{\perp}(\mathbb{R}^n, \mathbb{R}^q)$;
- Convex hull of R_b is equal to the principal subspace over b for all b ∈ J[⊥](ℝⁿ, ℝ^q).

イロト イヨト イヨト イヨト

13 C^1 -solutions of open relations

For every $b \in J^{\perp}(\mathbb{R}^{n-1} \times \mathbb{R}, \mathbb{R}^q)$ the fibre over b in $J^1(\mathbb{R}^n, \mathbb{R}^q)$ is a q-dimensional affine space. Define

$$\mathcal{R}_{b} = \{ \alpha \in J^{1}(\mathbb{R}^{n}, \mathbb{R}^{q}) : \alpha = (b, v) \in \mathcal{R} \} \cong \{ v \in \mathbb{R}^{q} : (b, v) \in \mathcal{R} \}$$

Theorem

Let \mathcal{R} be a subset of $J^1(\mathbb{R}^n, \mathbb{R}^q)$ satisfying the following conditions:

- \mathcal{R} is open;
- \mathcal{R}_b is connected for all $b \in J^{\perp}(\mathbb{R}^n, \mathbb{R}^q)$;
- Convex hull of R_b is equal to the principal subspace over b for all b ∈ J[⊥](ℝⁿ, ℝ^q).

If there are functions $f, \varphi : \mathbb{R}^n \to \mathbb{R}^q$ such that (j_f^{\perp}, φ) is a section of \mathcal{R} then f can be C^{\perp} approximated by a C^1 solution of \mathcal{R} .

13a C^1 -solutions of open relations

For every $b \in J^{\perp}(\mathbb{R}^n, \mathbb{R}^q)$ the fibre over b in $J^1(\mathbb{R}^n, \mathbb{R}^q)$ is a q-dimensional affine space. Define

$$\mathcal{R}_{b} = \{ \alpha \in J^{1}(\mathbb{R}^{n}, \mathbb{R}^{q}) : \alpha = (b, v) \in \mathcal{R} \}$$

Theorem

Let \mathcal{R} be a subset of $J^1(\mathbb{R}^n, \mathbb{R}^q)$ satisfying the following conditions:

- $\blacktriangleright \mathcal{R}$ is open;
- \mathcal{R}_b is connected for all $b \in J^{\perp}(\mathbb{R}^n, \mathbb{R}^q)$.

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

13a C^1 -solutions of open relations

For every $b \in J^{\perp}(\mathbb{R}^n, \mathbb{R}^q)$ the fibre over b in $J^1(\mathbb{R}^n, \mathbb{R}^q)$ is a q-dimensional affine space. Define

$$\mathcal{R}_{b} = \{ \alpha \in J^{1}(\mathbb{R}^{n}, \mathbb{R}^{q}) : \alpha = (b, v) \in \mathcal{R} \}$$

Theorem

Let \mathcal{R} be a subset of $J^1(\mathbb{R}^n, \mathbb{R}^q)$ satisfying the following conditions:

- $\blacktriangleright \mathcal{R}$ is open;
- \mathcal{R}_b is connected for all $b \in J^{\perp}(\mathbb{R}^n, \mathbb{R}^q)$.

If there are functions $f, \varphi : \mathbb{R}^n \to \mathbb{R}^q$ such that

- $(j^{\perp}f, \varphi)$ is a section of \mathcal{R} and
- ► $J_f(x)$ lies in the convex hull of $\mathcal{R}_{b(x)}$ for all $x \in \mathbb{R}^n$, where $b(x) = J^{\perp}f(x)$

then f can be C^{\perp} approximated by a C^1 solution of \mathcal{R} .

・ロト ・四ト ・ヨト ・ヨト

14 Open ample relations

Let $\mathcal{R} \subset J^1(\mathbb{R}^n, \mathbb{R}^q)$ be a first order relation.

Definition

 \mathcal{R} is said to be *ample* in the coordinate direction t if the convex hull of each pathcomponent of \mathcal{R}_b is all of $J_b^1(\mathbb{R}^n, \mathbb{R}^q)$. \mathcal{R} is said to be ample if it is ample in each coordinate direction.

Theorem

Let $\mathcal{R} \subset J^1(\mathbb{R}^n, \mathbb{R}^q)$ be an open relation which is ample in each coordinate direction. Then \mathcal{R} satisfies the (relative) h-principle.

Example: Smale-Hirsch immersion theorem.

イロト イヨト イヨト

15 Applications

Theorem

(Geiges and Gonzalo) Let M be a closed orientable 3-manifold. Then M admits a triple of pointwise independent contact forms α_1 , α_2 , α_3 with pointwise linearly independent Reeb vector fields.

15 Applications

Theorem

(Geiges and Gonzalo) Let M be a closed orientable 3-manifold. Then M admits a triple of pointwise independent contact forms α_1 , α_2 , α_3 with pointwise linearly independent Reeb vector fields.

Theorem

(McDuff) Given M with dim M = 2n + 1 and $\omega \in \Omega^2(M)$ with $\omega^n \neq 0$ there exits a $\omega' \in \Omega^2(M)$ such that $d\omega' = 0$ and $(\omega')^n \neq 0$. Moreover, one may prescribe the cohomology class of ω' .

(日) (同) (三) (三)

15 Applications

Theorem

(Geiges and Gonzalo) Let M be a closed orientable 3-manifold. Then M admits a triple of pointwise independent contact forms α_1 , α_2 , α_3 with pointwise linearly independent Reeb vector fields.

Theorem

(McDuff) Given M with dim M = 2n + 1 and $\omega \in \Omega^2(M)$ with $\omega^n \neq 0$ there exits a $\omega' \in \Omega^2(M)$ such that $d\omega' = 0$ and $(\omega')^n \neq 0$. Moreover, one may prescribe the cohomology class of ω' .

Theorem

(McDuff) Given M with dim M = 2n and differential forms $\alpha \in \Omega^1(M)$ and $\beta \in \Omega^2(M)$ with $\alpha \wedge \beta^{n-1}$ there exists a 1-form α' such that $\alpha' \wedge (d\alpha')^{n-1} \neq 0$.

イロト イヨト イヨト イヨト

18. C^1 -solutions of closed relations

Theorem

Let \mathcal{R} be a subset of $J^1(\mathbb{R}^n, \mathbb{R}^q)$ satisfying the following conditions:

- $\mathcal{R} \to J^{\perp}$ is a fibre bundle;
- \mathcal{R}_b is connected and locally path-connected for all $b \in J^{\perp}(\mathbb{R}^n, \mathbb{R}^q)$;
- *R_b* is nowhere flat.

18. C^1 -solutions of closed relations

Theorem

Let \mathcal{R} be a subset of $J^1(\mathbb{R}^n, \mathbb{R}^q)$ satisfying the following conditions:

- $\mathcal{R} \to J^{\perp}$ is a fibre bundle;
- \mathcal{R}_b is connected and locally path-connected for all $b \in J^{\perp}(\mathbb{R}^n, \mathbb{R}^q)$;
- ▶ *R_b* is nowhere flat.

If there are functions $f, \varphi : \mathbb{R}^n \to \mathbb{R}^q$ such that

- $(j^{\perp}f, \varphi)$ is a section of \mathcal{R} and
- ► $J_f(x)$ lies in the interior of the convex hull $Conv(\mathcal{R}_{b(x)})$ for all $x \in \mathbb{R}^n$, where $b(x) = j^{\perp} f(x)$.

then f can be C^{\perp} approximated by a C^1 solution of \mathcal{R} .

イロト イヨト イヨト イヨト

19 PDE as relations

A first order partial differential equation for functions $f : \mathbb{R}^n \longrightarrow \mathbb{R}^q$ is of the form:

$$\Psi(x, f(x), J_f(x)) = 0,$$
 (3)

where Ψ is a vector valued continuous map.

19 PDE as relations

A first order partial differential equation for functions $f : \mathbb{R}^n \longrightarrow \mathbb{R}^q$ is of the form:

$$\Psi(x, f(x), J_f(x)) = 0,$$
 (3)

イロト イヨト イヨト イヨト

where Ψ is a vector valued continuous map. We can now write the equation (3) as an inclusion of the form

 $\partial_t f(x) \in \mathcal{R}(j_f^{\perp}(x)),$

where $x \mapsto \mathcal{R}(j_f^{\perp}(x))$ is now a set valued map with values subsets of \mathbb{R}^q for each $x \in \mathbb{R}^n$. The set function \mathcal{R} can be defined as

$$\mathcal{R}(j_f^{\perp}(x)) = \{ v \in \mathbb{R}^q : \Psi(j_f^{\perp}(x), v) = 0 \}.$$

20 Applications to PDE

Consider the following PDE for functions $f = (f_1, f_2) : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$:

$$\Phi_1\big(\frac{\partial f_1}{\partial u_1},\frac{\partial f_2}{\partial u_1}\big)=\Phi_2\big(u_1,u_2,f_1,f_2,\frac{\partial f_1}{\partial u_2},\frac{\partial f_2}{\partial u_2}\big),$$

where $\Phi_1 : \mathbb{R}^2 \longrightarrow \mathbb{R}$ is real analytic function without critical point and $\Phi_2 : \mathbb{R}^6 \longrightarrow \mathbb{R}$ is any continuous functions.

Take $\tau = \{u_1 = \text{const.}\}$. Then we can rewrite the above equation as

$$\Phi_1(\tfrac{\partial f_1}{\partial u_1}, \tfrac{\partial f_2}{\partial u_1}) = \Phi_2(j_f^{\perp}).$$

Hence f is a solution of the relation \mathcal{R} given by

$$\mathcal{R} = \{(b, \alpha_1(x), \alpha_2(x)) : \Phi_1(\alpha_1(x), \alpha_2(x)) = \Phi_2(b)\}.$$

Thus the sets \mathcal{R}_b are the level sets of the function Φ_1 . Consider the function $\Phi_1(x_1, x_2) = x_1 + x_2^3$.

Φ₁⁻¹(a), a ∈ ℝ, is a connected curve in ℝ²
 ⇒ there exists a section J[⊥] → R.

<ロ> (日) (日) (日) (日) (日)

20 Applications to PDE

Consider the following PDE for functions $f = (f_1, f_2) : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$:

$$\Phi_1(\frac{\partial f_1}{\partial u_1},\frac{\partial f_2}{\partial u_1})=\Phi_2(u_1,u_2,f_1,f_2,\frac{\partial f_1}{\partial u_2},\frac{\partial f_2}{\partial u_2}),$$

where $\Phi_1 : \mathbb{R}^2 \longrightarrow \mathbb{R}$ is real analytic function without critical point and $\Phi_2 : \mathbb{R}^6 \longrightarrow \mathbb{R}$ is any continuous functions.

Take $\tau = \{u_1 = \text{const.}\}$. Then we can rewrite the above equation as

$$\Phi_1(\tfrac{\partial f_1}{\partial u_1}, \tfrac{\partial f_2}{\partial u_1}) = \Phi_2(j_f^{\perp}).$$

Hence f is a solution of the relation \mathcal{R} given by

$$\mathcal{R} = \{(b, \alpha_1(x), \alpha_2(x)) : \Phi_1(\alpha_1(x), \alpha_2(x)) = \Phi_2(b)\}.$$

Thus the sets \mathcal{R}_b are the level sets of the function Φ_1 . Consider the function $\Phi_1(x_1, x_2) = x_1 + x_2^3$.

▶ $\Phi_1^{-1}(a)$, $a \in \mathbb{R}$, is a connected curve in \mathbb{R}^2

 \Rightarrow there exists a section $J^{\perp} \longrightarrow \mathcal{R}$.

• Convex hull of $\Phi_1^{-1}(a)$ is all of \mathbb{R}^2 for all $a \in \mathbb{R}^2$.

The previous theorem implies that the solutions of the above PDE are dense in the space of C^0 -maps $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$.

16 Nash-Kuiper theorem

The following theorem can be obtained by an application of convex integration.

Theorem

(M,g) be a Riemannian manifold of dimension n. Let h denote the canonical metric on \mathbb{R}^q . If q > n and M admits a smooth immersion in \mathbb{R}^q , then there exists a C^1 -immersion $f : M \to \mathbb{R}^q$ such that $f^*h = g$.

(日) (同) (三) (三)

References

- Eliashberg, Y. Mishachev, N. Introduction to the *h*-principle. Graduate Studies in Mathematics, 48 (2002)
- Feit, S: *k*-mersions of manifolds. Acta Math. 122 (1969)
- Gromov, M: Partial Differential Relations (1985)
- Geiges, H: *h*-principles and flexibility in geometry. Mem. Amer. Math. Soc. 164 (2003)
- 📔 Hirsch, M: Immersions of Manifolds, Trans. AMS 93 (1959)
- Kuiper, N: On C¹-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17 (1955)
- McDuff, D: Applications of convex integration to symplectic and contact geometry. Ann. Inst. Fourier (Grenoble) 37 (1987)
- Nash J: C¹-Isometric Imbeddings, Ann. Math. 60 (1954)

Phillips, A: Submersions of open manifolds. Topology 6 (1967)

M. Datta

Convex integration