3.2 Components

If a space X is not connected, then the knowledge about its max-
imal connected subspaces becomes indispensable in any description of
the complete structure of the topology of X. We now consider these
“pieces” of the space X.

Definition 3.2.1 Let X be a space, and x € X. The component C(x)
of z in X is the union of all connected subsets of X which contain x.

By Theorem 3.1.9, the component C(z) is connected. And, it is
evident from its very definition that C'(xz) is not properly contained in
any connected subset of X. Thus C(z) is a maximal connected subset
of X; we shall see in a moment that the components of different points
of X are either equal or disjoint. So we refer to them as the components
of X.

A connected space X has only one component, viz., X itself, and
at the opposite extreme, the components of a discrete space are the
one-point subsets.

Proposition 3.2.2 Let X be a space. Then:
(a) Each component of X is closed.
(b) Each connected subset of X is contained in a component of X.
(c) The set of all components of X forms a partition of X.

Proof. (a): If C(x) is a component of x € X, then C(z) is connected.
So C(x) is also connected. By the maximality of C(x), we have C(x) =

C(z), for C(x) C C(x). Hence C(x) is closed in X.

(b): If A is a nonempty connected subset of X, then A C C(a) for
any a € A; this follows from the definition of a component.

(c): By definition, each point 2 € X belongs to a component of X,
viz., C(z). If C(z) and C(z’) intersect, then C(x) UC(z') is connected.
The maximality of C(z) and C'(2) implies that C(z) = C(z)UC(z') =

C'(2'). Thus any two components of X are either equal or disjoint. <

Proposition 3.2.2 provides a decomposition of the space X into
connected pieces which are also closed. However, the components of this
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decomposition do not have to be open. If the number of components is
finite, then obviously each component is open as well.

Example 3.2.1 Let Q be the space of rational numbers with the usual
topology. If X C @Q has two distinct points x and y, then, for an
irrational number ¢ between x and y, X = [XN(—o0, ¢)|U[X N(e, +00)]
is a separation of X, and therefore X is disconnected. It follows that
the components of QQ are its one-point subsets. But the points in QQ are
not open, for every nonempty open subset of Q is infinite.

We next determine the components of a product space in terms of
those of its factor spaces.

Proposition 3.2.3 Let X,, a € A, be a family of spaces. Then the
component of a point x = (z4) in [[ X4 is [[C(za), where C(z,) is
the component of z, in X,.

Proof. Let E be the component of z in []X,. By Theorem 3.1.13,
[[C(z4) is connected, so we have [[ C(z,) C E. To prove the reverse
inclusion, assume that y € E. If pg : [[ Xo — Xp is the projection
map, then pg(F) is a connected subset of Xz containing both x3 and
yz. Consequently, yz € C(z3), and we have y € [[ C(z,). O

It is of some interest to observe that the components of the product
of discrete spaces X,, a € A, are one-point sets, although [] X, is not
discrete when A is infinite.

If f:X — Y is continuous, and C(z) is the component of = in
X, then f(C(x)) C C(f(x)), the component of f(z) in Y. If f is a
homeomorphism, then we also have f~1 (C(f(z))) € C(z), and there-
fore f (C(z)) = C (f(x)). This shows that the number of components
of a space and structure of each component are topological invariants.
So the knowledge about components can be used for distinguishing
between spaces.



Definition 3.2.4 A space X is called totally disconnected if its com-
ponents are singleton sets.

Obviously, a discrete space is totally disconnected. More interesting
examples are the Cantor set, the set Q of rationals, and the set R — Q
of irrationals with the relative topologies induced from R. Note that
a one-point space is both connected and totally disconnected. If X is
totally disconnected and Y is a subspace of X, then Y is also totally
disconnected, for a component of ¥ must be contained in some com-
ponent of X. Also, we see from Proposition 3.2.3 that the product of
a tamily of totally disconnected spaces is totally disconnected.

Returning to the general discussion, let X = AU B be a separation
of X. If x and y belong to a component of X, then both points are
either in A or in B (ref. Exercise 3.1.2). However, there are spaces X
with distinct points x and y, which do not lie together in a connected
set, and yet they cannot be separated by any separation ot X.



3.3 Path-connected Spaces

Path-connectedness corresponds to our intuitive notion of consid-
ering a space one piece if one can move in the space from any point to
any other point. This kind of property has led to many sophisticated
algebraic techniques for the study of geometry of the spaces.

Let X be a space. A path in X is a continuous function f : I — X,
where [ is the unit interval with the usual subspace topology. The point
f(0) is referred to as the origin (or initial point) and the point f(1) as
the end (or terminal point) of f. We usually say that f is a path in
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X from f(0) to f(1) (or joining them). It is important to note that &
path is a function, not the image of the function.

Definition 3.3.1 A space X is called path-connected if for each pai
of points xg,x; € X, there is a path in X joining z¢ to x;.

Example 3.3.1 An indiscrete space and the Sierpinski space are obvi
ously path-connected.

Example 3.3.2 Given z,y € R", the set of points (1 — t)x +ty € X
0 <t <1, is called a (closed) line segment between x and y. A sel
X C R™ is called convez if it contains the line segment joining eacl
pair of its points. Thus, if X is a convex subspace of R", then, giver
z,y € X, we have (1 — t)x + ty € X for every t € I. So there is ¢
path in X joining = to y, namely, ¢t — (1 — t)z + ty. In particular, the
euclidean space R™, the n-disc D", and the open balls in R™ are al
path-connected.

Lemma 3.3.2 A space X is path-connected if and only if there is ¢

point zp € X such that each € X can be joined to x¢ by a path ir
b,

Proof. The necessity is obvious. To establish the sufficiency, let x,y €
X. Suppose that f and g are paths in X joining x and y to x(, respec
tively. Consider the function A : I — X defined by

A(t) = { f(2t) 0<t<1/2,
g(2 —2t) 1/2<t<1.

For t = 1/2, we have f(2t) = g = ¢(2 — 2t). By the Gluing lemma
h is continuous, and thus defines a path in X joining x to y. So X i
path-connected. 4
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Example 3.3.3 Consider the subspace A of R? consisting of the points
(z,y), where (x = 1/n, n € Nyand 0 <y < 1)or (0 <z <1 and
y = 0) (see Figure 3.3). For each (z,y) € A, the function f : I — X
defined by

FO=1 a1y 124 102/550 )| =

is a path from (0,0) to (z,y) in X. From the preceding lemma, it is
immediate that A is path-connected. Its closure A = AU ({0} x I) is
also path-connected, since A and {0} x I have a common point. The
subspace A C R? is called the Comb space.

{ (2xt,0) g<is—"

FIGURE 3.3: Comb space

Example 3.3.4 The n-sphere S™, n > 0, is path-connected. For, if H; =
{x € S"|x,, 41 > 0} is the upper hemisphere and y € H, is the north
pole, then

E— (L= by +ty) /(1 — )z + ty]

is a path in S™ joining = to y. So H; is path-connected. Similarly,
the lower hemisphere Hy = {x € S"|z,4+1 < 0} is also path-connected.
Obviously, H; N Hy # @, and hence S™ = H, U H, is path-connected.

Theorem 3.3.4 Every path-connected space is connected.

Proof. Suppose that X is path-connected, and choose a point zg € X.
For each © € X, there is a path f, in X from zy to z. Since [ is
connected, so is im( f,). Clearly, X is the union of the connected subsets
im(f,), x € X. By Theorem 3.1.9, X is connected. &
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In general, the converse of the above theorem is false, although it
is true for all subspaces of R. Thus path-connectedness is a stronger
form of connectedness.

Example 3.3.5 We have already seen that the subspace S =
{(z,sin1/2)]|0 < < 1} C R? is connected (refer to Ex. 3.1.7), and
therefore the closed topologist’s sine curve S is connected. But, it is
not path-connected. To see this, consider the points zy = (0,0) and
z; = (1/m,0) in S and suppose that f : I — S is a path with origin
2o and end z. Let p; : R? — R, i = 1,2, be the projection maps.
Then the compositions p; f and po f must be continuous. Let ¢y be the
supremum of the points ¢ € I such that p, f(t) = 0. We assert that p f
is discontinuous at t;, a contradiction. By the continuity of p, f. it is
easily seen that p, f(ty) = 0; accordingly, ¢ty < 1. Since f(t) € S for
t > to, the image of each interval [to,¢;) under p; f contains numbers
of the form 2/nm for all large integers n. Thus pyf takes on both val-
ues +1 and —1 in [tg, ;). Hence the open interval (yo — 1/3,y0 + 1/3),
where yg = pa f (o), cannot contain the image of [to, ;) under p, f, and
this proves our assertion.

The invariance properties of path-connectedness are similar to those
of connectedness. The simple proof of the folowing theorem is left to
the reader.

Theorem 3.3.5 If f : X — Y is continuous and X is path-connected,
then f(X) is path-connected.

The preceding theorem shows that path-connectedness is a topo-
logical invariant. Like connectedness, this property is also productive,
but not hereditary.

Theorem 3.3.6 The product of a family of path-connected spaces is
path-connected.

Proof. Let X,, a € A, be a family of path-connected spaces, and
suppose that x,y € [[ X4. Then, for each a € A, there is a path
fa : I = X, joining z, to y,. Define ¢ : I — [[ X4 by &(t) = (fa(t)),
tel. If pg:]] Xo — Xp is the projection map, then pgop = fz is con-
tinuous. So ¢ is continuous, by Theorem 2.2.10. Also, we have ¢(0) = x
and ¢(1) = y, obviously. Thus x and y are joined by a path in [] X,,
and the theorem follows. O
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Note that there is no analogue of Theorem 3.1.12 for path-
connectedness, as shown by the subset S in Example 3.3.5.

By Corollary 3.3.3, for each point x in a given space X, there exists
a maximal path-connected subset of X containing z, viz., the union of
all path-connected subsets of X which contain z.

Definition 3.3.7 Let X be a space, and x € X. The path component
of z in X is the maximal path-connected subset of X containing .

Clearly, the path component of a point x in a space X is the set of all
points y € X which can be joined to x by a path in X. If P(z) and P(y)
are path components of two points z and y in a space X, and z € P(x)N
P(y), then P(z)U P(y) is path-connected. By the maximality of P(x),
we have P(z) = P(x) U P(y). So P(x) C P(y). Similarly, P(y) C P(x)
and the eqality holds. It follows that the path components of the space
X partition the set X, and X is path-connected if and only if it has no
more than one path component. Since a path component is connected,
it is contained in a component. Accordingly, each component of X is a
disjoint union of its path components.



3.4 Local Connectivity

The path components of a space X are not necessarily closed sub-
sets of X, nor are they necessarily open, as shown by the path com-
ponents S and {0} x [—1,1] of the closed sine curve (refer to Ex.
3.1.7). Also, the components of a space need not be open (cf. Ex.
3.2.1). We will study here the localized version of connectedness and
path-connectedness under which components and path components,
respectively, are open and hence closed.

LOCAL CONNECTEDNESS

Definition 3.4.1 A space X is called locally connected at x € X if,
for each open neighbourhood U of z, there is a connected open set V
such that x € V C U. The space X is locally connected if it is locally
connected at each of its points.
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It is clear that the family of all connected open sets in a locally
connected space forms a basis. Conversely, if a space X has a basis
consisting of connected sets, then it is obviously locally connected.

Example 3.4.1 A discrete space is locally connected, and so is an in-
discrete space.

Example 3.4.2 The euclidean space R" is locally connected, since its
base of open balls consists of connected sets. Similarly, S™ is also locally
connected.

Ezample 3.4.3 The subspace X = {0} U {1/n|n = 1,2,...} of the real
line is not locally connected. Because the singleton set {1/n} are clopen
in X, and any neighbourhood of 0 contains them for large values of n.
Thus there is no connected neighbourhood of the point 0 in X.

A locally connected space need not be connected, as shown by the
subspace [0,1/2) U (1/2,1] of I. On the other hand, the following ex-
amples show that a connected space need not be locally connected.

Example 3.4.4 For each integer n > 0, let L,, be the line segment in
R? joining the origin 0 to the point (1,1/n), and Ly be the segment
{(s,0)|0 < s <1} (Figure 3.4). Then each L,,, n > 0, is connected and
contains the point 0. Hence X = |J L,, is a connected subset of R2. We

Ly
L,
Ls
ELBI I

o <y

FIGURE 3.4: A connected space which is not locally connected.
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show that X is not locally connected at any point x of Ly other than
0. Consider a small ball B about x such that 0 ¢ B. For 1/n less than
the radius of B, L, N B # &, and this intersection is a component of
U = XN B, for it is connected, closed and open in U. Now, if V' is open
and x € V C U, then clearly V N L,, # @ for all large n. Therefore V'
cannot be connected, and we see that X is not locally connected at .

Ezample 3.4.5 The closed topologist’s sine curve (ref. Ex. 3.1.5) is not
locally connected at any point p = (0,y), —1 < y < 1. Consider the
open nbd U = SN B of p, where B is an open ball of radius less than
1/2 and centered at p (see Figure 3.5). Clearly, the boundary of B
divides the wiggly part of S into infinitely many arcs, and U = SN B

i
H

FIGURE 3.5: The closed topologist’s sine curve is not locally connected.

consists of a segment C of {(0,y)| — 1 <y < 1}, and some of the arcs of
S. Each arc of S lying in B is closed and connected, being a continuous
image of a closed interval. Since C' is separated from every arc contained
in U, it follows that C is the component of p in U. Obviously, every
neighbourhood of p intersects S; so there is no connected open set V'
in S containing p and contained in U. Thus S is not locally connected
at p.

Similarly, one sees that the sine curve S U {0} is also not locally
connected at 0, while the subspace S is.
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Now, we turn to see a characterisation of locally connected spaces
in terms of the components of open subsets of the space. By the com-
ponents of a subset U C X, we mean the components of the subspace
U of X. Thus, the component of a point x in U is a subset of U.

Theorem 3.4.2 A space X is locally connected if and only if the
components of each open subset of X are open.

Proof. Suppose that X is locally connected. Let U be an open subset
of X, and C be a component of U. If z € C, then there is a connected
open set V C X such that z € V C U, by our hypothesis. Since C is a
component of z in U and V is a connected subset of U containing x,
we have V C C. Thus C' is a neighbourhood of each of its points, and
therefore open.

To prove the converse, let U C X be open, and x € U. By our hy-
pothesis, the component V of x in U is open. So X is locally connected
at x. This is true for every x € X, and X is locally connected. O

As a particular case of the above theorem, we see that each com-
ponent of a locally connected space is open.

Next, we come to the usual questions involving continuous func-
tions, products and subspaces of locally connected spaces. Although,
local connectedness is not hereditary, every open subset of a locally
connected space is locally connected. It is noteworthy that every con-
nected subspace of the real line R is locally connected. It is also clear
from the definition that a continuous open image of a locally connected
space is locally connected. Thus local connectedness is a topological in-
variant. Moreover, we have

Theorem 3.4.3 Let f: X — Y be a continuous closed surjection. If
X is locally connected, then so is Y.

Proof. Suppose that X is locally connected. By Theorem 3.4.2, we need
to show that the components of each open set U C Y are open. Let C' be
a component of U. We assert that f~1(C) is open. If z € f~1(C), then
there exists a connected open set V in X such that z € V C f~1(U),
since X is locally connected and f~!(U) is open in X. It follows that
f(z) € f(V) C C, for f(V) is connected. So z € V C f~1(C), and
f~1(C) is a neighbourhood of z. This proves our assertion. Now, since
fisclosed, Y —C = f (X — f~1(C)) is closed. So C is open and the
theorem follows. O
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However, local connectedness is not preserved by a continuous map,
as shown by the following.

Ezample 3.4.6 Let Y = NU {0} with the discrete topology, and X be
the space in Ex. 3.4.3. It is known that Y is locally connected, and X
is not. Obviously, the function f : Y — X, defined by f(n) = 1/n,
n € N, and f(0) = 0, is a continuous bijection.

The property of local connectedness is not transmitted to arbitrary
products, as shown by an infinite product of discrete spaces. In this
regard, we have the following.

Theorem 3.4.4 Let X,, o € A, be a collection of spaces. Then the
product [[ X, is locally connected if and only if each X, is locally
connected and all but finitely many spaces X, are also connected.

Proof. Suppose that [[ X, is locally connected. Then each component
C of [[ X, is open. Let pg : [[ Xo — Xz denote the projection map
for every index 8 € A. Find a basic open set B = ﬂ;l:lp;} {120
say, contained in C. Then, for a # ay,...,an, Xa = pa(B) = pa(C)
is connected. To see the local connectedness of Xz, let x € Xz be
arbitrary, and Ug be an open neighbourhood of z in X 3. Then pEl (Up)
is open in [ [ X, and contains a point £ with = £3. By our assumption,
there is a connected open set V' in [[ X, such that £ € V C pgl (Ug).
We have = € pg(V) C Up. The set pg(V) is connected and open, for
pp is continuous and open. Thus, Xz is locally connected at x.

To prove the converse, let & = (z,) € [[Xa, and let B =
I p;} (Ua,) be a basic neighbourhood of . By our hypothesis, there
are at most finitely many indices @ # a,...,«, such that X, is not
connected. Assume that these indices are a,41,...,Qn4m. By local
connectedness of the X, there exists a connected open neighbourhood
Vo, of 2oy 1 <21 < n+m,such that V,, C U,, for 1 < ¢ < n. By
Theorem 3.1.13, C = ] p;! (Va,) is a connected open set, and
£ e C C B.So[[ X, is locally connected at &, and this completes the

proof. %
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LOCAL PATH-CONNECTEDNESS

Definition 3.4.5 A space X is said to be locally path-connected at a
point x € X if each open neighbourhood of z contains a path-connected
neighbourhood of x. The space X is called locally path-connected if it
is locally path-connected at each of its points.

A discrete space is obviously locally path-connected. The euclidean
space R™ is locally path-connected, since the open balls are path-
connected. The n-sphere S™ is locally path-connected, because each
point of S™ has a neighbourhood which is homeomorphic to an open
subset of R™. It should be noted that a path-connected space need not
be locally path-connected. This can be seen by the union of the closed
topologist’s sine curve with an arc connecting the points (1,sin1) and
(0,1). (see Figure 3.6.)

FIGURE 3.6: A path-connected space which is not locally path-connected.

Clearly, a space X is locally path-connected at x € X if and only
if there exists a neighbourhood basis at x consisting of path-connected
sets. A frequently used criterion for local path-connectedness is de-
scribed by

Proposition 3.4.6 A space X is locally path-connected if and only if
the path components of open subsets of X are open.
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Proof. =: Suppose that X is locally path-connected, and let U C X
be open and P a path component of U. If x € P, then there exists
a path-connected neighbourhood V of x with V C U. Asz € PNV,
P UV is path-connected and contained in U. Since P is a maximal
path-connected subset of U, we have P UV = P, which implies that
V C P. Thus P is a neighbourhood of x, and P is open.

«: Obvious. &

From the preceding proposition, it is clear that a space X is locally
path-connected if and only if it has a basis of path-connected open sets.
Another equivalent formulation of local path-connectedness is given in
Exercise 14.

Corollary 3.4.7 Let X be a locally path-connected space. Then each
path component P(z) of X is clopen, and therefore coincides with the
component C(x) of X.

Proof. By Proposition 3.4.6, P(x) is open. The complement of P(x) in
X is the union of all path components of X which are different from
P(z), and is therefore open. Thus P(x) is closed, too. Finally, P(z) is
connected, by Theorem 3.3.4, and hence a component of X. O

As a consequence of the preceding corollary, we obtain

Corollary 3.4.8 A connected, locally path-connected space is path-
connected.

A discrete space with at least two points shows that the condition
of connectedness in this corollary is essential.

It is clear from the definition that an open subspace of a locally
path-connected space is locally path-connected. Hence every connected
open subspace of R™ and of S” is path-connected. It is also obvious that
a locally path-connected space is locally connected, but the converse is
not true (see Exercise 5).

The invariance properties of local path-connectedness are similar
to those of local connectedness. The proof of the following theorems is
similar to that of Theorem 3.4.3, and left to the reader.

Theorem 3.4.9 Let f : X — Y be a continuous closed or open sur-
jection. If X is locally path-connected, then so is Y.

By the preceding theorem, the local path-connectedness is a topo-
logical invariant. However, the property is not continuous invariant.
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Example 3.4.7 Consider the subspaces X = S U {(—1,0)} and Y =
SU{(0,0)} of the closed topologist’s sine curve (Ex. 3.1.7). Clearly, X is
locally path-connected, but Y is not (see Ex. 3.4.5). Define f : X — Y
by setting f(x) = z for every z € S, and f(—1,0) = (0,0). Then f is
a continuous surjection.

Theorem 3.4.10 Let X, o € A, be a collection of spaces. Then the
product [, X, is locally path-connected if and only if each X, is
locally path-connected, and all but finitely many X, are also path-

connected.



