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Theorem 4.7.1. (Invariance of dimension). If m # n, then
(i) S™ is not homeomorphic to S™, and
(ii) R™ is not homeomorphic to R™.

Proof. (i) Suppose, on the contrary, there is a homeomorphism f: S™ — S™. Let
h: |K| — S™ and k: |L| — S™ be triangulations of S™ and S", respectively.
We have already computed the homology groups of K and L. Since f is a
homeomorphism, the map g = k! fh: |[K| — |L| is also a homeomorphism.
Let g7': |L| — |K| be its inverse. We consider the induced homomorphisms
g+: Hy(K) = H,,(L) and g;': H, (L) — H,,(K) in simplicial homology.
Since g~ lg = I k|, we find by theorem 4.6.4, that

99« = (97'9)« = (L1x))w = T, (5)-

Similarly, we find that g.g;' is also identity on H,,(L). Therefore,
gx: Hpn(K) — H,,(L) is an isomorphism. But this is a contradiction, because
H,,(K) = Z whereas H,,(L) = 0, since m # n. This proves the theorem.

(ii) Again, suppose R™ is homeomorphic to R™. Since these are locally compact
Hausdorff spaces, their one-point compactifications, viz., S and S™ must
also be homeomorphic, which is a contradiction to (i) proved above. Hence, if
m # n, R™ cannot be homeomorphic to R"™. [ ]

If D™ denotes the n-dimensional disk (closed), then its boundary is home-
omorphic to the (n — 1)-dimensional sphere S"~!. Thus, S"~! is a compact
subset of D™. Recall that a subspace A of a space X is said to be retract of X
if there is a continuous map 7: X — A such that r(a) = a for a € A. Now, one
can ask the question: Is S*~! is a retract of D"? If n = 1, this is clearly impos-
sible because D! = [—1,1] is connected whereas S° = {—1,1} is disconnected.
If n > 2, then also the answer to the above question is “no”. We have

Theorem 4.7.2. (No-retraction Theorem). The sphere S*™1 cannot be a retract
of D™, for any n > 1.

Proof. If possible, suppose there is a retraction r: D — S*~!. Let 5: S*~! —
D™ be the inclusion map. Then, clearly, ¢ = Ign—1. The case when n = 1 is
clear because D! is connected whereas S is not. Hence we assume that n > 1.
Let h: |[K| — D™ and k: |L| — S"~! be triangulations of the disc and sphere.
Notice that we have continuous maps k~'rh: |K| — |L| and h~Yik: |L| — |K]|
such that their composite is identity, i.e., (k~'rh)(h~'ik) = I;;;. This means
the composite

Z=H, (L) = Hy_(K) = H,_1(L) = Z

is identity on Z by theorem 4.6.4. But this last map factors through the zero
group H,,_1(K) = 0, which is a contradiction. ]
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Recall that a space X is said to have fixed-point property if for every
continuous map f: X — X, there exists a point z¢ € X such that f(z¢) = xo.
From the first course in real analysis, we know that the unit interval [0,1] has
the fixed-point property. The following important theorem is a far reaching
generalization of this result.

Theorem 4.7.3. (Brouwer’s Fixed-Point Theorem). Let f: D™ — D", n > 1 be
any continuous map. Then [ has at least one fixed point.

Proof. Suppose f has no fixed points. This means for every z, f(x) # x. Now,
we define a map g: D® — S"! as follows: For any z € D", consider the
line segment (vector) joining f(z) to = and extend it. Then, this vector when
produced will meet S"~! exactly at one point, which we call g(x) (see Fig. 4.9).
First, we prove that g: D® — S"~! is continuous. Note that for each z, the
nonzero vector © — f(x) can be multiplied by a unique positive scalar, say A,
such that g(z) = f(z) + Ma — f(z)), and this X depends on z. Since g(z) lies
on S"~! its norm is 1 and so ||f(x) + A(z — f(z))|| = 1. This implies that

1 @)1+ 22[|(z = f@)I[* + 2Af(2) - (x = f(2)) = 1.

This is a quadratic equation in A having only one positive real root A.

Therefore, by the formula for the roots of a quadratic equation, we get

A = _-ﬁl(il;w(;)'f‘(w)). This proves that A is a continuous function of x and

therefore g is a continuous function. But g is clearly a retraction of D™ onto
S”~1. a contradiction to the no-retraction theorem. [ |

ax)

D" Sn-1
a(y)

Fig. 4.9: The map g becomes a retraction
The following result gives an interesting application of the Brouwer fixed-
point theorem to a result of linear algebra. We have
Proposition 4.7.4. Let A be an n X n real matrixz with positive entries. Then A
has a positive eigen value.

Proof. Consider the Euclidean space R™, and observe that A determines a lin-
ear transformation from R™ to itself. Also, note that if x = (z1,...,z,) € R",
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where x; > 0 for all ¢ = 1,...,n, then, since all entries of A are positive, Ax
also has the same property, i.e., A maps the positive octant P including its
boundary to itself. Furthermore, if one entry of z is positive, then all entries
of Ax are positive. Let us also point out that if S*~! denotes the unit sphere
in R™, then S"~! N P is homeomorphic to the (n — 1)-disk D"~. Now, we
can define a map f: S""!' NP — S"" ! N P by putting f(z) = Az/||Az].
Then evidently f is continuous. Hence, by the Brouwer’s fixed point theorem,

there exists a non-zero vector zo € S"~! N P such that f(zg) = w0, i.e.,
Azg/||Azol| = xo. This says that Axg = ||Azo|zo which means ||Azyl/(#£ 0) is
an eigen value of A. ]

Knowing that every continuous map f: X — X has a fixed point is an
important property of the space X, and it has interesting applications. Let
us illustrate this by another example. Suppose we have a set of continuous
functions f;: R™ — R, = 1,2,...,n, each of which has a nonempty zero set,
i.e., there exists some points of R™ where f; is zero. Now, the question is: Is
there a common zero of all these functions f;? In other words, do the following
system of simultaneous equations has a solution in R"™:

fl(fl;l,xQ, . ~a$n)
fQ('Ilvaa"'axn) =
folz1,22,...,2n) = 0

This question is really a question whether the space R™ has the fixed-point
property. To see why this is so, let us consider the following continuous maps
gi: R™ — R defined by

gi(x1, 20, ..., xn) = filx, ..., Tn) + 24
fori=1,2,...,n. We consider the map h: R" — R" defined by

hxy, ..o zn) = (g1(21, oo &0)s oo oy gn(T1y ooy Tp)).

Notice that h is continuous because each g; is continuous. Now, observe that h
has a fixed point (a1, ...,a,) € R™ if and only if for each i = 1,...,n, we have

gi(ar,...,a,) = a;,
and that will happen if and only if
filar,...,an) =0= falar,...,an) = ... = fulas,...,an),

i.e., all the f/s have a common zero. It may be remarked that the Euclidean
space R™ used in this example does not have the fixed-point property because
translations by nonzero vectors do not have fixed points. On the other hand, by
Brouwer’s theorem, the cube I, where I = [—1, 1], has the fixed-point property
and so can very well be used for the space X to conclude that the simultaneous
equations have a solution.
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Exercises
1. If a space X has the fixed-point property, then show that any space Y

10.

which is homeomorphic to X also has the fixed-point property.

. If Ais a retract of X and if X has the fixed-point property, then show

that A also has the fixed point property.

. Let X be a compact metric space and f: X — X be a fixed-point free

map. Prove that there is an € > 0 such that d(z, f(z)) > € for all x € X.

By giving concrete examples prove that the 2-sphere, the torus and the
Klein bottle do not have the fixed-point property.

Prove that the projective plane P? has the fixed-point property (this may
be bit difficult at this stage!).

. If a polyhedron A C X is a retract of a polyhedron X, then show that for

g >0, Hy(A) is a direct summand of Hy(X).

. Prove that an injective map between two polyhedra does not necessarily

induce an injective map between their homology groups.

. Show that the following conditions are equivalent:

(a) S"~! is not a retract of D™.
(b) D™ has the fixed-point property.
(¢) The n-simplex §,, has the fixed-point property.

. Show that the map g: RP?® — RP? defined by the linear transformation

T:R* — R* given by T'(z1, z2, 73, 74) = (=22, 71, —T4, z3) does not have
the fixed-point property. More generally, show that RP?*+1 does not have
the fixed-point property.

Prove that the homology groups of the real projective spaces RP", n > 2,
and that of the complex projective spaces CP™, n > 1 are given by the
following (See Examples 1.1.4 (a) and 1.1.4 (b). The cases n > 3 need
concepts not covered so far.)

(i) n is odd:
Z, q=0,n
H,(RP") = (¢ Zy, 0<g<mn,qodd
0, otherwise,
(ii) n is even:
Z, q=20

H,(RP") = Zy, 0<q<mn,qodd
0, otherwise,
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(iii) The complex case

Z, qis even
0, otherwise,

H,(CP") =~ {

11. Show that any nonsingular linear transformation 7: R® — R3 defines a
continuous map g: RP? — RP? which has a fixed point. More generally,
prove that RP?* has the fixed-point property for any & > 0.

12. Prove that any compact locally contractible space has the fixed-point
property.

4.8 Degree of a Map and its Applications

Recall that a homomorphism f: Z — Z of the infinite cyclic group is
completely determined by the image of its generator 1 € Z under the map f,
i.e., f is simply multiplication by the integer f(1) = n. This fact is used in the
following:

Definition 4.8.1. Let f: S™ — S™, (n > 1) be a continuous map and h: |K| — S™
be any triangulation of S™. Then we know that f induces a homomorphism
(h=fh)s: Hy(K) — H,(K). Since H,(K) = Z, there is a unique integer
d such that for every element o € H,(K), (h™1fh).(a) = da. This unique
integer d is called the degree of f and we denote it by deg f.

We must prove that the integer d does not depend on the chosen
triangulation h: |K| — S™. For this, let k: |[L| — S™ be another triangulation
of S™. Note that ¢ = k7 'h: |[K| — |L| and ¢! = h=tk: |L| — |K| are
homeomorphisms. Therefore, (k7! fk).(a) = (k7 h).(h™ fh)(h7 k). () =

G (R fR)d (@) = ¢uld - (87 1)i(@)) = 6u(¢7")u(d - @) = d - o, which says
that (k=1 fk). is again multiplication by d. This proves the claim.

The following result is a consequence of the definitions.

Proposition 4.8.2. (a) The identity map Ign: S™ — S™ has degree +1.

(b) If f:S™ — S™, g: S™ — S™ are continuous maps, then deg(go f) =
degg - deg f.

(¢) The degree of any homeomorphism is +1.

Proof. (a) This follows from the fact that the identity map Is» induces the
identity map in homology.
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(b) Let k: |K| — S™ be a triangulation of S™. Suppose deg f = ni, deg g = ns.
Then for any a € H,(K), we have

(k™'go fk)u(a) = (k7 gk).(k™" fk).(@))
= (k7'gk).(m(e)
= na(na)
(nany)a.

Hence, deg(g o f) =degg-deg f.

(c) Let h: S™ — S™ be a homeomorphism. Then h™! o h = Is» and hence, by
(a), we have
deg(h ™' oh) =1=degh™' - degh.

Since deg h,deg h~! both are integers, we must have degh = degh™! = +1 or
—1. |

Next, we are going to prove that if f, g: S® — S™ are two homotopic maps
then deg f = degg. First, observe that if h: |K| — S™ is any triangulation of
S™, then h=1 fh, h=tgh: |K| — |K| are also homotopic. We will prove later (see
Theorem 4.8.4) that two homotopic maps induce identical homomorphism in
homology. Hence the result follows at once. However, proving that homotopic
maps induce identical homomorphisms in homology is much more involved
than proving the above result on degree directly. We will, therefore, use the
classical definition of the degree of a map due to L.E.J. Brouwer, which is
more intuitive than the “homology definition” given earlier, to prove the above
result on degree. Indeed, Brouwer’s definition of degree of a map f: S™ — S™
really means the number of times the domain sphere “wraps” around the range
sphere. We have

Definition 4.8.3. Let f: S™ — S™ be a continuous map and let h: |K| — S"
be a triangulation of S™. Let ¢: K*) — K be a simplicial approzimation of f,
where K®) is the kth barycentric subdivision of K. For any positively oriented
n-simplex T of K, let p be the number of positively oriented simplezes o of K*)
such that ¢(o) = 7 and let q be the number of negatively oriented simplexes o
of K%) such that @(0) = 7. Then the integer p — q is independent of the choice
of 7, K, K% and ¢. This integer is called the degree of the map f.

It is true that the two definitions of the degree of a map are equivalent,
but we will not prove this fact here. The curious reader may like to see
(Hocking and Young [10]) for a detailed discussion and proofs of all the
“independent statements” made above.

It follows from Brouwer’s definition that the map f: S' — S! defined by
f(2) = 2™ has degree n; the degree of a constant map f: S* — S",n > 1, is
zero; the degree of identity map Ign: S™ — S™ is one, etc. Now, we can prove
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Theorem 4.8.4. If two continuous maps f, g: S* — S™ are homotopic, then
deg f = degg.

Proof. Let H: S™ x I — S™ be a homotopy starting from f and terminating
into g. If we put H(z,t) = h(x), x € S*,t € I, then each h;: S* — S™ is
a continuous map and hg = f,h; = g. Now, it suffices to show that the map
I — 7 defined by t ~ deg h; is constant. The last fact will follow if we can prove
that the map from I — Z is continuous because I is connected and Z has the
discrete topology. This is what we now proceed to do: Let K be a triangulation
of S, and consider the open cover {ost(w;) : w; is a vertex of K}. Suppose € is
a Lebesgue number for the open cover. Since H is uniformly continuous, we can
find a positive real § such that A C S™, B C I with diam(A) < §, diam(B) < §
imply that diam(H(A x B)) < e. Let K*) be a barycentric subdivision of K
with mesh less than 6/2 so that for each vertex v of K®), diam(ost(v)) < 4.
Select a partition
0=ty <t <...<tq:1

of I for which |t; —t;_1] < 6,¥j =0,1,...,¢. Then for each vertex v; of K, the
set h(ost(v;) x [tj—1,t;]) has diameter less than e, for each j. Therefore, there
is a vertex w;; of K such that h(ost(v;) % [t;_1,t;]) C ost(w;;). Hence, for
each t € [t;_1,t;], we can define a simplicial map ¢, by putting ¢, (v;) = w;j,
which is evidently a simplicial approximation to h,, for all ¢ € [t;_1,¢;]. Since
¢4 is same for all ¢ € [t;_1,t;], it follows from the Brouwer’s definition of the
degree of a map that h; has the same degree for all ¢ € [t;_1,t;], showing that
t ~ deg h; is a continuous map from I to Z. [ |

We must point out here that the converse of the above theorem was also
studied by Brouwer. In fact, he had proved that if f, g: S? — S? are two
continuous maps such that deg f = degg, then f and g are homotopic. It was
H. Hopf (1894-1971) who proved the converse in full generality in the year
1927. We are not including the proof of the converse here, but give only the
statement of this beautiful theorem:

Theorem 4.8.5. (Hopf’s Classification Theorem). Two continuous maps
f, g: S — S™ are homotopic if and only if they have the same degree.

We will remain contented only by stating the above theorem, though
its several generalizations are also known. The most important aspect of the
above theorem is to observe that the homotopy classes of maps from S™ to
itself are completely classified by the set of integers! Since we are leaving the
above theorem without giving its proof, we can as well state the following
theorem without proof which is regarded as one of the most satisfying theorems
of topology because it accomplishes the complete classification of compact 2-
manifolds without boundary (called closed 2-manifolds or closed surfaces) up
to homeomorphisms.
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Theorem 4.8.6. Two closed surfaces are homeomorphic if and only if they have
the same Betti numbers in all dimensions.

The above theorem says that any two closed 2-manifolds X and Y
are homeomorphic if and only if Hy(X) = Hy(Y),Vq > 0. This is one in-
stance where the homology groups provide complete classification of closed
2-manifolds. Note that we have defined homology groups only for those com-
pact topological spaces which are triangulable, i.e., are polyhedra. Hence it
is natural to ask as to which manifolds are triangulable? Poincaré had asked
this question for any n-manifold, n > 2, not necessarily compact — there is a
suitable definition of simplicial complexes which are not necessarily finite. It
is now well known through the works of several mathematicians that every 2-
manifold, as well as every 3-manifold, is triangulable. Hence a surface is always
triangulable whether it is compact or not. This is the reason that in the above
theorem triangulability of the surfaces is not a part of the hypothesis. We must
also mention here that the above theorem really shows the power of homology
groups. In fact, this theorem was known as early as 1890 through the works of
C. Jordan (1858-1922) and A.F. Mébius (1790-1860). As we know, C. Jordan
is known for his “Jordan Curve” Theorem, and A.F. Md&bius is known for his
“Mobius band” through which he introduced the idea of “orientability”. The
modern definition of orientability in terms of homology groups was introduced
by J.W. Alexander (1888-1971). A complete proof of the above theorem in a
more precise form can be found in W.H. Massey [13].

Definition 4.8.7. Let S™ be the unit n-sphere embedded in R™*!. Then the map
A: S™ — S™ defined by A(x) = —x, © € S" is called the antipodal map.

Note that the antipodal map is induced by a linear transformation
T: R"™ — R"™! whose determinant is (—1)"*1. The following result is, there-
fore, quite interesting.

Theorem 4.8.8. The degree of the antipodal map A: S™ — S™ is (—1)"*t1, n > 1.
Proof. We know that S" = {(z1,...,7,41) € R* | Z?H z? = 1}. A map

r;: S* — S™ defined by 7i(z1, ..., @i Tpp1) = (X100, —Tiye oo, Tpaq) 1S
called a reflection map. We will show that the map r: S® — S™ defined by
r(x1,...,&ny1) = (z1,...,—2Tpy1) has degree —1. This will mean that each

reflection r; has degree —1. To see this, note that if A is the homeomorphism of
S™ which interchanges the coordinates z; and x,, 1 for a fixed i, then h=!rh = r;
and so degr; = degh™! - degr - deg h = degr, proving that any reflection has
degree (—1). Now, since the antipodal map A = ry ory o...7,41, it follows
that deg A = (—1)"*!. Next, we are going to determine a triangulation S(K)
of S and a simplicial map g: S(K) — S(K) which will induce the map r. To
do this, let K be a triangulation of S*~! embedded in S™ in the standard way.
Let wy and w; be two distinct vertices of the cones wg * K and wy * K. Put
S(K) = (wp * K) U (wy * K). Let g be the simplicial map from S(K) to itself
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which interchanges the vertices wgy and wy and keeps all other vertices fixed. Let
h:|K|— S"~! be a triangulating homeomorphism. We define k: |S(K)| — S™
by the following formula: If y = (1 — t)x + twy for some x € | K|, then define

k(y) = (V1 =12 h(x), 1),

and if y = (1 — ¢)x + twy, then put

k(y) = (V1 =1t h(x), —t).

Then k is a homeomorphism making the diagram

|S(K)| ‘ s”
gl lr
|S(K)| p S
commutative. Hence it suffices to show that degg = —1. Let z be an n-cycle of

S(K). Then z is a chain of the form
z= [U}o,Cm] + [U]1,dm],

where ¢,, and d,,, are chains in X and m = n — 1. Assume n > 1. Since z is a
cycle, we have

0= 0(2) = ¢m — [wo, Ocm] + dy, — (w1, Odypy].
Restricting this chain to K, we get
0=cy+dn.

Therefore,
Z = [U/Q,Cm] - [wlucm]'

Since g simply exchanges wg, wy, we find that
gx(2) = (w1, e] — [wo, cm] = —2.

Hence, degg = —1. The case n = 1 is proved similarly. ]

Tangent Vector Fields on Spheres

Now, we present an interesting application of the above theorem on the
existence of tangent vector fields on Euclidean spheres. We have

Definition 4.8.9. A continuous mapping f: S™ — S™ is said to be a tangent
vector field on S™ if for each vector x € S™, the two vectors x and f(x) are
perpendicular to each other.



