M.A./M.Sc. (Mathematics) Entrance Examination 2016-17

Max Time: 2 hours
Max Marks: 150
Instructions: There are 50 questions. Every question has four choices of which exactly one is correct. For correct answer, 3 marks will be given. For wrong answer, 1 mark will be deducted. Scientific calculators are allowed.

In the following $\mathbb{R}, \mathbb{N}, \mathbb{Q}, \mathbb{Z}$ and \mathbb{C} denote the set of all real numbers, natural numbers, rational numbers, integers and complex numbers respectively.
(1) Let X be a countably infinite subset of \mathbb{R} and A be a countably infinite subset of X. Then the set $X \backslash A=\{x \in X \mid x \notin A\}$
A) is empty.
B) is a finite set .
C) can be a countably infinite set.
D) can be an uncountable set.
(2) The subset $A=\left\{x \in \mathbb{Q}: x^{2}<4\right\}$ of \mathbb{R} is
A) bounded above but not bounded below.
B) bounded above and $\sup A=2$.
C) bounded above but does not have a supremum .
D) not bounded above .
(3) Let f be a function defined on $[0, \infty)$ by $f(x)=[x]$, the greatest integer less than or equal to x. Then
A) f is continuous at each point of \mathbb{N}.
B) f is continuous on $[0, \infty)$.
C) f is discontinuous at $x=1,2,3, \ldots$.
D) f is continuous on $[0,7]$.
(4) The series $x+\frac{2^{2} x^{2}}{2!}+\frac{3^{3} x^{3}}{3!}+\cdots$ is convergent if x belongs to the interval
A) $(0,1 / e)$.
B) $(1 / e, \infty)$.
C) $(2 / e, 3 / e)$.
D) $(3 / e, 4 / e)$.
(5) The subset $A=\{x \in \mathbb{Q}:-1<x<0\} \cup \mathbb{N}$ of \mathbb{R} is
A) bounded, infinite set and has a limit point in \mathbb{R}.
B) unbounded, infinite set and has a limit point in \mathbb{R}.
C) unbounded, infinite set and does not have a limit point in \mathbb{R}.
D) bounded, infinite set and does not have a limit point in \mathbb{R}.
(6) Let f be a real-valued monotone non-decreasing function on \mathbb{R}. Then
A) for $a \in \mathbb{R}, \lim _{x \rightarrow a} f(x)$ exists .
B) f is an unbounded function.
C) $h(x)=e^{-f(x)}$ is a bounded function.
D) if $a<b$, then $\lim _{x \rightarrow a^{+}} f(x) \leq \lim _{x \rightarrow b^{-}} f(x)$.
(7) Let $X=C[0,1]$ be the space of all real-valued continuous functions on $[0,1]$. Then (X, d) is not a complete metric space if
A) $d(f, g)=\int_{0}^{1}|f(x)-g(x)| d x$.
B) $d(f, g)=\max _{x \in[0,1]}|f(x)-g(x)|$.
C) $d(f, g)=\sup _{x \in[0,1]}|f(x)-g(x)|$.
D) $d(f, g)=\left\{\begin{array}{ll}0, & \text { if } f=g \\ 1, & \text { if } f \neq g\end{array}\right.$.
(8) The series $\sum_{k=0}^{\infty} \frac{k^{2}+3 k+1}{(k+2)!}$ converges to
A) 1 .
B) $1 / 2$.
C) 2 .
D) 3 .
(9) We know that $x e^{x}=\sum_{n=1}^{\infty} \frac{x^{n}}{(n-1)!}$. The series $\sum_{n=1}^{\infty} \frac{2^{n} n^{2}}{n!}$ converges to
A) e^{2}.
B) $2 e^{2}$.
C) $4 e^{2}$.
D) $6 e^{2}$.
(10) Let $X=\mathbb{R}^{2}$ with metric defined by $d(x, y)=1$ if $x \neq y$ and $d(x, x)=0$. Then
A) every subset of X is dense in (X, d).
B) (X, d) is separable .
C) (X, d) is compact but not connected.
D) every subspace of (X, d) is complete.
(11) Let d_{1} and d_{2} be metrics on a non-empty set X. Which of the following is not a metric on X ?
A) $\max \left(d_{1}, d_{2}\right)$.
B) $\sqrt{d_{1}^{2}+d_{2}^{2}}$.
C) $1+d_{1}+d_{2}$.
D) $\frac{1}{4} d_{1}+\frac{3}{4} d_{2}$.
(12) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=\sqrt{|x y|}$. Then at origin
A) f is continuous and $\frac{\partial f}{\partial x}$ exists .
B) f is discontinuous and $\frac{\partial f}{\partial x}$ exists.
C) f is continuous but $\frac{\partial f}{\partial x}$ does not exist .
D) f is discontinuous but $\frac{\partial f}{\partial x}$ exists.
(13) The sequence of real-valued functions $f_{n}(x)=x^{n}, x \in[0,1] \cup\{2\}$, is
A) pointwise convergent but not uniformly convergent.
B) uniformly convergent.
C) bounded but not pointwise convergent.
D) not bounded.
(14) The integral $\int_{0}^{\infty} \sin x d x$
A) exists and equals 0 .
B) exists and equals 1 .
C) exists and equals -1 .
D) does not exist.
(15) If $\left\{a_{n}\right\}$ is a bounded sequence of real numbers, then
A) $\inf _{n} a_{n} \leq \liminf _{n \rightarrow \infty} a_{n}$ and $\sup _{n} a_{n} \leq \limsup _{n \rightarrow \infty} a_{n}$.
B) $\liminf _{n \rightarrow \infty} a_{n} \leq \inf _{n} a_{n}$.
C) $\liminf _{n \rightarrow \infty} a_{n} \leq \inf _{n} a_{n}$ and $\sup _{n} a_{n} \leq \limsup _{n \rightarrow \infty} a_{n}$.
D) $\inf _{n} a_{n} \leq \liminf _{n \rightarrow \infty} a_{n}$ and $\limsup _{n \rightarrow \infty}^{n} a_{n} \leq \sup _{n}^{n \rightarrow \infty} a_{n}$.
(16) The series $\sum_{n=1}^{\infty} \frac{(2 n)!}{(n!)^{2}}$
A) diverges .
B) converges to 1 .
C) converges to $\frac{1}{2}$.
D) converges to $\frac{1}{7}$.
(17) Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y}, & x^{2} \neq-y \\ 0, & x^{2}=-y\end{cases}
$$

Then
A) directional derivative does not exist at $(0,0)$.
B) f is continuous at $(0,0)$.
C) f is differentiable at $(0,0)$.
D) each directional derivative exists at $(0,0)$ but f is not continuous.
(18) Let $f:[-1,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\frac{x}{|x|}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

and F be its indefinite integral. Which of the following is not true?
A) $F^{\prime}(0)$ does not exist.
B) F is an anti-derivative of f on $[-1,1]$.
C) F is Riemann integrable on $[-1,1]$.
D) F is continuous on $[-1,1]$.
(19) Let $f(x)=x^{2}, x \in[0,1]$. For each $n \in \mathbb{N}$, let P_{n} be the partition of $[0,1]$ given by $P_{n}=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}\right\}$. If $\alpha_{n}=U\left(f, P_{n}\right)$ (upper sum) and $\beta_{n}=L\left(f, P_{n}\right)$ (lower sum) then
A) $\alpha_{n}=(n+2)(2 n+1) /\left(6 n^{2}\right)$.
B) $\beta_{n}=(n-2)(2 n+1) /\left(6 n^{2}\right)$.
C) $\beta_{n}=(n-1)(2 n-1) /\left(6 n^{2}\right)$.
D) $\lim _{n \rightarrow \infty} \alpha_{n} \neq \lim _{n \rightarrow \infty} \beta_{n}$.
(20) Let $I=\int_{0}^{\pi / 2} \log \sin x d x$. Then
A) I diverges at $x=0$.
B) I converges and is equal to $-\pi \log 2$.
C) I converges and is equal to $-\frac{\pi}{2} \log 2$.
D) I diverges at $x=\frac{\pi}{4}$.
(21) Which of the following polynomials is not irreducible over \mathbb{Z} ?
A) $x^{4}+125 x^{2}+25 x+5$.
B) $2 x^{3}+6 x+12$.
C) $x^{3}+2 x+1$.
D) $x^{4}+x^{3}+x^{2}+x+1$.
(22) A complex number α is said to be algebraic integer if it satisfies a monic polynomial equation with integer coefficients. Which of the following is not an algebraic integer?
A) $\sqrt{2}$.
B) $\frac{1}{\sqrt{2}}$.
C) $\frac{1-\sqrt{5}}{2}$.
D) $\sqrt{\alpha}, \alpha$ is an algebraic integer.
(23) If $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & -2\end{array}\right]$, then the value of $A^{4}-A^{3}-4 A^{2}+4 I$ is
A) $4\left[\begin{array}{ccc}-2 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & 1\end{array}\right]$.
B) $4\left[\begin{array}{ccc}0 & -1 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & 3\end{array}\right]$.
C) $4\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 3 & -1 \\ 0 & 0 & -1\end{array}\right]$.
D) $4\left[\begin{array}{ccc}0 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & -3\end{array}\right]$.
(24) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by $T(x, y)=(x+y, x-y, 2 y)$. If $\{(1,1),(1,0)\}$ and $\{(1,1,1),(1,0,1),(0,0,1)\}$ are ordered bases of \mathbb{R}^{2} and \mathbb{R}^{3} respectively, then the matrix representation of T with respect to the ordered bases is
A) $\left[\begin{array}{cc}0 & 1 \\ 2 & 1 \\ 1 & -1\end{array}\right]$.
B) $\left[\begin{array}{cc}1 & 0 \\ -1 & 0 \\ 2 & -1\end{array}\right]$.
C) $\left[\begin{array}{cc}2 & 1 \\ -2 & 0 \\ 0 & -1\end{array}\right]$.
D) $\left[\begin{array}{cc}0 & 1 \\ 2 & 0 \\ 0 & -1\end{array}\right]$.
(25) Let P_{4} be real vector space of real polynomials of degree ≤ 4. Define an inner product on P_{4} by

$$
\left\langle\sum_{i=0}^{4} a_{i} x^{i}, \sum_{i=0}^{4} b_{i} x^{i}\right\rangle=\sum_{i=0}^{4} a_{i} b_{i} .
$$

Then the set $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ is
A) orthogonal but not orthonormal .
B) orthonormal .
C) not orthogonal.
D) none of these.
(26) If $\{a+i b, c+i d\}$ is a basis of \mathbb{C} over \mathbb{R}, then
A) $a c-b d=0$.
B) $a c-b d \neq 0$.
C) $a d-b c=0$.
D) $a d-b c \neq 0$.
(27) Consider $M_{1}=\left(\begin{array}{ll}1 & 0 \\ 3 & 2\end{array}\right), M_{2}=\left(\begin{array}{cc}-1 & 2 \\ 3 & 2\end{array}\right), M_{3}=\left(\begin{array}{cc}5 & -6 \\ -3 & -2\end{array}\right)$ and $M_{4}=$ $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ of $M_{2 \times 2}(\mathbb{R})$. Then
A) $\left\{M_{2}, M_{3}, M_{4}\right\}$ is linearly independent.
B) $\left\{M_{1}, M_{2}, M_{4}\right\}$ is linearly independent.
C) $\left\{M_{1}, M_{3}, M_{4}\right\}$ is linearly independent.
D) $\left\{M_{1}, M_{2}, M_{3}\right\}$ is linearly dependent.
(28) If $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)=\alpha M_{1}+\beta M_{2}+\gamma M_{3}$, where $M_{1}=I_{2 \times 2}, M_{2}=\left(\begin{array}{cc}0 & 1 \\ 1 & 1\end{array}\right)$ and $M_{3}=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, then
A) $\alpha=\beta=1, \gamma=2$.
B) $\alpha=\beta=-1, \gamma=2$.
C) $\alpha=1, \beta=-1, \gamma=2$.
D) $\alpha=-1, \beta=1, \gamma=2$.
(29) Let W be the subset of the vector space $V=M_{n \times n}(\mathbb{R})$ consisting of symmetric matrices. Then
A) W is not a subspace of V.
B) W is a subspace of V of dimension $\frac{n(n-1)}{2}$.
C) W is a subspace of V of dimension $\frac{n(n+1)}{2}$.
D) W is a subspace of V of dimension $n^{2}-n$.
(30) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation and B be a basis of \mathbb{R}^{3} given by $B=\left\{(1,1,1)^{t},(1,2,3)^{t},(1,1,2)^{t}\right\}$. If $T\left((1,1,1)^{t}\right)=(1,1,1)^{t}, T\left((1,2,3)^{t}\right)=$ $(-1,-2,-3)^{t}$ and $T\left((1,1,2)^{t}\right)=(2,2,4)^{t}\left(A^{t}\right.$ being the transpose of $\left.A\right)$, then $T\left((2,3,6)^{t}\right)$ is
A) $(2,1,4)^{t}$.
B) $(1,2,4)^{t}$.
C) $(3,2,1)^{t}$.
D) $(2,3,4)^{t}$.
(31) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation and $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ be a basis for \mathbb{R}^{3}. Suppose that $T\left(v_{1}\right)=(1,1,0)^{t}, T\left(v_{2}\right)=(1,0,-1)^{t}$ and $T\left(v_{3}\right)=(2,1,-1)^{t}$ then
A) $w=(1,2,1)^{t} \notin$ Range of T.
B) $\operatorname{dim}($ Range of $T)=1$.
C) $\operatorname{dim}($ Null space of $T)=2$.
D) Range of T is a plane in \mathbb{R}^{3}.
(32) The last two digits of the number $9^{\left(9^{9}\right)}$ is
A) 29 .
B) 89 .
C) 49 .
D) 69 .
(33) Let G be the group of all 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ under matrix multiplication, where $a d-b c \neq 0$ and a, b, c, d are integers modulo 3 . The order of G is
A) 24 .
B) 16 .
C) 48 .
D) 81 .
(34) For the ideal $I=\left\langle x^{2}+1\right\rangle$ of $\mathbb{Z}[x]$, which of the following is true?
A) I is a maximal ideal but not a prime ideal.
B) I is a prime ideal but not a maximal ideal.
C) I is neither a prime ideal nor a maximal ideal.
D) I is both prime and maximal ideal.
(35) Consider the following statements:

1. Every Euclidean domain is a principal ideal domain;
2. Every principal ideal domain is a unique factorization domain;
3. Every unique factorization domain is a Euclidean domain.

Then
A) statements 1 and 2 are true.
B) statements 2 and 3 are true.
C) statements 1 and 3 are true.
D) statements 1, 2 and 3 are true.
(36) The ordinary differential equation:

$$
\frac{d y}{d x}=\frac{2 y}{x}
$$

with the initial condition $y(0)=0$, has
A) infinitely many solutions.
B) no solution.
C) more than one but only finitely many solutions.
D) unique solution.
(37) Consider the partial differential equation:

$$
4 \frac{\partial^{2} u}{\partial x^{2}}+12 \frac{\partial^{2} u}{\partial x \partial y}+9 \frac{\partial^{2} u}{\partial y^{2}}-9 u=9
$$

Which of the following is not correct?
A) It is a second order parabolic equation.
B) The characteristic curves are given by $\zeta=2 y-3 x$ and $\eta=y$.
C) The canonical form is given by $\frac{\partial^{2} u}{\partial \eta^{2}}-u=1$, where η is a characteristic variable.
D) The canonical form is $\frac{\partial^{2} u}{\partial \eta^{2}}+u=1$, where η is a characteristic variable.
(38) Consider the one dimensional wave equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}, x>0, t>0
$$

subject to the initial conditions:

$$
\begin{aligned}
u(x, 0) & =|\sin x|, x \geq 0 \\
u_{t}(x, 0) & =0, x \geq 0
\end{aligned}
$$

and the boundary condition:

$$
u(0, t)=0, t \geq 0
$$

Then $u\left(\pi, \frac{\pi}{4}\right)$ is equal to
A) 1 .
B) 0 .
C) $\frac{1}{2}$.
D) $-\frac{1}{2}$.
(39) The initial value problem

$$
x \frac{d y}{d x}=y+x^{2}, x>0, y(0)=0
$$

has
A) infinitely many solutions.
B) exactly two solutions.
C) a unique solution.
D) no solution.
(40) In a tank there is 120 litres of brine (salted water) containing a total of 50 kg of dissolved salt. Pure water is allowed to run into the tank at the rate of 3 litres per minute. Brine runs out of the tank at the rate of 2 litres per minute. The instantaneous concentration in the tank is kept uniform by stirring. How much salt is in the tank at the end of one hour?
A) 15.45 kg .
B) 19.53 kg .
C) 14.81 kg .
D) 18.39 kg .
(41) If the differential equation

$$
2 t^{2} \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t}-3 y=0
$$

is associated with the boundary conditions $y(1)=5, y(4)=9$, then $y(9)=$
A) 27.44 .
B) 13.2 .
C) 19 .
D) 11.35 .
(42) The third degree hermite polynomial approximation for the function $y=y(x)$ such that $y(0)=1, y^{\prime}(0)=0, y(1)=3$ and $y^{\prime}(1)=5$ is given by
A) $1+x^{2}+x^{3}$.
B) $1+x^{3}+x$.
C) $x^{2}+x^{3}$.
D) none of the above.
(43) Let y be the solution of the initial value problem

$$
\frac{d y}{d x}=y-x, y(0)=2
$$

Using Runge-Kutta second order method with step size $h=0.1$, the approximate value of $y(0.1)$ correct to four decimal places is given by
A) 2.8909 .
B) 2.7142 .
C) 2.6714 .
D) 2.7716 .
(44) Consider the system of linear equations

$$
\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
7 \\
1 \\
1
\end{array}\right]
$$

With the initial approximation $\left[x_{1}^{(0)}, x_{2}^{(0)}, x_{3}^{(0)}\right]^{T}=[0,0,0]^{T}$, the approximate value of the solution $\left[x_{1}^{(1)}, x_{2}^{(1)}, x_{3}^{(1)}\right]^{T}$ after one iteration by Gauss Seidel method is
A) $[3.2,2.25,1.5]^{T}$.
B) $[3.5,2.25,1.625]^{T}$.
C) $[2.25,3.5,1.625]^{T}$.
D) $[2.5,3.5,1.6]^{T}$.
(45) For the wave equation

$$
u_{t t}=16 u_{x x}
$$

the characteristic coordinates are
A) $\xi=x+16 t, \eta=x-16 t$.
B) $\xi=x+4 t, \eta=x-4 t$.
C) $\xi=x+256 t, \eta=x-256 t$.
D) $\xi=x+2 t, \eta=x-2 t$.
(46) Let f_{1} and f_{2} be two solutions of

$$
a_{0}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{2}(x) y=0
$$

where a_{0}, a_{1} and a_{2} are continuous on $[0,1]$ and $a_{0}(x) \neq 0$ for all $x \in[0,1]$. Moreover, let $f_{1}\left(\frac{1}{2}\right)=f_{2}\left(\frac{1}{2}\right)=0$. Then
A) one of f_{1} and f_{2} must be identically zero.
B) $f_{1}(x)=f_{2}(x)$ for all $x \in[0,1]$.
C) $f_{1}(x)=c f_{2}(x)$ for some constant c.
D) none of the above.
(47) The Laplace transform of $e^{4 t}$ is
A) $1 /(s+2)$.
B) $1 /(s-2)$.
C) $1 /(s+4)$.
D) $1 /(s-4)$.
(48) Let $f(t)=4 \sin ^{2} t$ and let $\sum_{n=0}^{\infty} a_{n} \cos n t$ be the Fourier cosine series of $f(t)$. Which one is true?
A) $a_{0}=0, a_{2}=1, a_{4}=2$.
B) $a_{0}=2, a_{2}=0, a_{4}=-2$.
C) $a_{0}=2, a_{2}=-2, a_{4}=0$.
D) $a_{0}=0, a_{2}=-2, a_{4}=2$.
(49) For $a, b, c \in \mathbb{R}$, if the differential equation

$$
\left(a x^{2}+b x y+y^{2}\right) d x+\left(2 x^{2}+c x y+y^{2}\right) d y=0
$$

is exact, then
A) $b=2, c=2 a$.
B) $b=4, c=2$.
C) $b=2, c=4$.
D) $b=2, a=2 c$.
(50) Let $u(x, t)$ be the solution of the wave equation

$$
u_{x x}=u_{t t}, \quad u(x, 0)=\cos (5 \pi x), \quad u_{t}(x, 0)=0 .
$$

Then the value of $u(1,1)$ is
A) -1 .
B) 0 .
C) 2 .
D) 1 .

