- (1) Consider $A = \{ q \in \mathbb{Q} : q^2 \geq 2 \}$ as a subset of the metric space (\mathbb{Q}, d) , where d(x, y) = |x y|. Then A is
 - A) closed but not open in \mathbb{Q}
 - B) open but not closed in \mathbb{Q}
 - C) neither open nor closed in \mathbb{Q}
 - D) both open and closed in \mathbb{Q} .
- (2) The set \mathbb{N} considered as a subspace of (\mathbb{R}, d) where d(x, y) = |x y|, is
 - A) closed but not complete
 - B) complete but not closed
 - C) both closed and complete
 - D) neither closed nor complete.
- (3) Let Y be a totally bounded subset of a metric space X. Then the closure \overline{Y} of Y
 - A) is totally bounded
 - B) may not be totally bounded even if X is complete
 - C) is totally bounded if and only if X is complete
 - D) is totally bounded if and only if X is compact.
- (4) Let X, Y be metric spaces, $f: X \to Y$ be a continuous function, A be a bounded subset of X and let B = f(A). Then B is
 - A) bounded
 - B) bounded if A is also closed
 - C) bounded if A is compact
 - D) bounded if A is complete.
- (5) Let X be a connected metric space and U be an open subset of X. Then
 - A) U cannot be closed in X
 - B) if U is closed in X, then U = X
 - C) if U is closed in X, then $U = \phi$, the empty set
 - D) if U is closed in X and U is non-empty, then U = X.
- (6) Let X be a connected metric space and $f: X \to \mathbb{R}$ be a continuous function. Then f(X)
 - A) is whole of \mathbb{R}
 - B) is a bounded subset of \mathbb{R}
 - C) is an interval in \mathbb{R}
 - D) may not be an interval in \mathbb{R} .

(7) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined as

$$f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^4}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

Let $D_u f(0,0)$ denote the directional derivative of f at (0,0) in the direction $u = (u_1, u_2) \neq (0, 0)$. Then f is

- A) continuous at (0,0) and $D_u f(0,0)$ exist for all u
- B) continuous at (0,0) but $D_u f(0,0)$ does not exist for some $u \neq (0,0)$
- C) not continuous at (0,0) but $D_u f(0,0)$ exist for all u
- D) not continuous at (0,0) and $D_u f(0,0)$ does not exist for some $u \neq (0,0)$.
- (8) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined as

$$f(x, y) = \frac{x^2 - y^2}{1 + x^2 + y^2}$$

Then

- A) $\frac{\partial^2 f}{\partial x \partial y}(0, 0)$ and $\frac{\partial^2 f}{\partial y \partial x}(0, 0)$ exist but are not equal B) $\frac{\partial^2 f}{\partial x \partial y}(0, 0)$ exist but $\frac{\partial^2 f}{\partial y \partial x}(0, 0)$ does not exist C) $\frac{\partial^2 f}{\partial y \partial x}(0, 0)$ exist but $\frac{\partial^2 f}{\partial x \partial y}(0, 0)$ does not exist D) $\frac{\partial^2 f}{\partial x \partial y}(0, 0)$ and $\frac{\partial^2 f}{\partial y \partial x}(0, 0)$ exist and are equal.

- (9) The sequence

$$\left\langle \frac{2^{n+1}+3^{n+1}}{2^n+3^n} \right\rangle$$

converges to

- A) 1
- B) 2
- C) 3
- D) 5.
- (10) The limit of the sequence $\langle \sqrt{(n+1)(n+2)} n \rangle$ as $n \to \infty$ is
 - A) $\sqrt{2} 1$
- B) 3
- C) 3/2
- D) 0.
- (11) The radius of convergence of the series

$$\sum_{n=0}^{\infty} \frac{1}{2^n} x^{3n}$$

is

- A) 1
- B) ∞
- C) 1/2
- D) $2^{1/3}$.
- (12) Which one of the following sequence converges uniformly on the indicated set?

A)
$$f_n(x) = (1 - |x|)^n$$
; $x \in (-1, 1)$

B)
$$f_n(x) = \frac{1}{\pi} \sin nx; \quad x \in \mathbb{R}$$

C)
$$f_n(x) = x^n$$
; $x \in [0, 1]$

B)
$$f_n(x) = \frac{1}{n} \sin nx; \quad x \in \mathbb{R}$$

C) $f_n(x) = x^n; \quad x \in [0, 1]$
D) $f_n(x) = \frac{1}{1+x^n}; \quad x \in [0, \infty).$

(13) Which one of the following integrals is convergent?

A)
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$

C)
$$\int_{0}^{1} \frac{1}{x^2} dx$$

B)
$$\int_1^\infty \frac{1}{\sqrt{x}} dx$$

D) $\int_0^\infty \frac{1}{\sqrt{x}}$.

C)
$$\int_0^1 \frac{1}{x^2} dx$$

D)
$$\int_0^\infty \frac{1}{\sqrt{x}}$$
.

(14) The value of the integral

$$\int_{-\infty}^{\infty} e^{-x^2} dx$$

is

B)
$$\sqrt{2\pi}$$

C)
$$\sqrt{\pi}$$

D)
$$\sqrt{\pi/2}$$
.

(15) Let $f: I \to \mathbb{R}$ be an increasing function where I is an interval in \mathbb{R} . Then

- A) f^2 is always increasing
- B) f^2 is always decreasing
- C) f^2 is constant $\Rightarrow f$ is constant
- D) f^2 may be neither decreasing nor increasing.

(16) Consider the function $f(x) = x^2$ on [0, 1] and the partition P of [0, 1] given by

$$P = \left\{ 0 < \frac{1}{n} < \frac{2}{n} < \dots < \frac{n-1}{n} < 1 \right\}.$$

Then the upper and the lower Riemann sums of f are

A)
$$U(f, P) = (1 + \frac{1}{2})(2 - \frac{1}{2})/6$$
 and $L(f, P) = (1 + \frac{1}{2})(2 + \frac{1}{2})/6$

B)
$$U(f, P) = (1 + \frac{1}{r})(2 + \frac{1}{r})/6$$
 and $L(f, P) = (1 - \frac{1}{r})(2 - \frac{1}{r})/6$

A)
$$U(f, P) = (1 + \frac{1}{n})(2 - \frac{1}{n})/6$$
 and $L(f, P) = (1 + \frac{1}{n})(2 + \frac{1}{n})/6$
B) $U(f, P) = (1 + \frac{1}{n})(2 + \frac{1}{n})/6$ and $L(f, P) = (1 - \frac{1}{n})(2 - \frac{1}{n})/6$
C) $U(f, P) = (1 + \frac{1}{n})(2 + \frac{1}{n})/6$ and $L(f, P) = (1 - \frac{1}{n})(2 + \frac{1}{n})/6$
D) $U(f, P) = (1 - \frac{1}{n})(2 + \frac{1}{n})/6$ and $L(f, P) = (1 + \frac{1}{n})(2 - \frac{1}{n})/6$

D)
$$U(f, P) = (1 - \frac{\tilde{i}}{n})(2 + \frac{\tilde{i}}{n})/6$$
 and $L(f, P) = (1 + \frac{\tilde{i}}{n})(2 - \frac{\tilde{i}}{n})/6$

(17) Which one of the following is true?

- A) If $\sum a_n$ diverges and $a_n > 0$, then $\sum \frac{a_n}{1+a_n}$ diverges B) If $\sum a_n$ and $\sum b_n$ diverge, then $\sum (a_n + b_n)$ diverges C) If $\sum a_n$ and $\sum b_n$ diverge, then $\sum (a_n + b_n)$ converges D) If $\sum a_n$ converges and $\sum b_n$ diverges, then $\sum (a_n + b_n)$ converges.

(18) If $\sum a_n = A$, $\sum |a_n| = B$ and A and B are finite, then

$$A) |A| = B$$

B)
$$A \leq B$$

C)
$$|A| \ge B$$

D)
$$A = B$$
.

(19) If
$$x_n = 1 + (-1)^n + \frac{1}{2^n}$$
, then

- A) $\limsup x_n = 1$
- B) $\liminf x_n = 1$
- C) x_n is a convergent sequence
- D) $\limsup x_n \neq \liminf x_n$.
- (20) Let $\langle x_n \rangle$ be the sequence defined by $x_1 = 2$ and $x_{n+1} = \frac{1}{2}(x_n + \frac{2}{x_n})$. Then
 - A) $\langle x_n \rangle$ converges to rational number
 - B) $\langle x_n \rangle$ is an increasing sequence
 - C) $\langle x_n \rangle$ converges to $2\sqrt{2}$
 - D) $\langle x_n \rangle$ is a decreasing sequence.
- (21) Which one of the following series converges?
 - A) $\sum \cos \frac{1}{n^2}$ C) $\sum \frac{1}{n^{1+1/n}}$

B) $\sum \sin \frac{1}{n^2}$ D) $\sum n^{\cos 3}$.

- (22) The sum of the series

$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2}$$

is

A) $\frac{\pi^2}{8}$ C) $\frac{\pi}{2}$

B) $\frac{\pi^2}{6}$ D) 1.

- (23) Which one of the following set is not countable?
 - A) \mathbb{N}^r , where $r \geq 1$ and \mathbb{N} is the set of natural numbers
 - B) $\{0, 1\}^{\mathbb{N}}$, the set of all the sequences which takes values 0 and 1
 - C) \mathbb{Z} , set of integers
 - D) $\sqrt{2\mathbb{Q}}$, \mathbb{Q} is set of rational numbers.
- (24) Let $f:[0,1]\to\mathbb{R}$ be a continuous function such that $f(x^2)=f(x)$ for all $x \in [0, 1]$. Which one of the following is not true in general?
 - A) f is constant
 - B) f is uniformly continuous
 - C) f is differentiable
 - D) $f(x) \ge 0 \ \forall x \in [0, 1].$
- (25) Let $f:[0,1] \to [0,1]$ be a continuous function and $I:[0,1] \to [0,1]$ be the identity function. Then f and I

- A) agree exactly at one point
- B) agree at least at one point
- C) may not agree at any point
- D) agree at most at one point.
- (26) For $x \in \mathbb{R}$, let [x] denote the greatest integer n such that $n \leq x$. The function h(x) = x[x] is
 - A) continuous everywhere
 - B) continuous only at $x = \pm 1, \pm 2, \pm 3, \cdots$
 - C) continuous if $x \neq \pm 1, \pm 2, \pm 3, \cdots$
 - D) bounded on \mathbb{R} .
- (27) Let $\langle x_n \rangle$ be an unbounded sequence in \mathbb{R} . Then
 - A) $\langle x_n \rangle$ has a convergent subsequence

 - B) $\langle x_n \rangle$ has a subsequence $\langle x_{n_k} \rangle$ such that $x_{n_k} \to 0$ C) $\langle x_n \rangle$ has a subsequence $\langle x_{n_k} \rangle$ such that $\frac{1}{x_{n_k}} \to 0$
 - D) Every subsequence of $\langle x_n \rangle$ is unbounded.
- (28) Consider the function $q: \mathbb{R} \to \mathbb{R}$ defined by

$$g(x) = \begin{cases} 0, & \text{if } x \ge 0, \\ e^{-1/x^2}, & \text{if } x < 0. \end{cases}$$

Which one of the following is not true?

- A) g has derivatives of all orders at every point
- B) $q^n(0) = 0$ for all $n \in \mathbb{N}$
- C) Taylor Series expansion of g about x = 0 converges to g for all x
- D) Taylor Series expansion of g about x = 0 converges to g for all $x \ge 0$.
- (29) The function

$$f(x) = x\sin x + \frac{1}{1+x^2}; \quad x \in I$$

where $I \subseteq \mathbb{R}$ is

- A) uniformly continuous if $I = \mathbb{R}$
- B) uniformly continuous if I is compact
- C) uniformly continuous if I is closed
- D) not uniformly continuous on [0, 1].

(30) Let the function $f: \mathbb{R} \to \mathbb{R}$ be defined as

$$f(x) = \begin{cases} x^2, & \text{if } x \in (0, 2) \cap \mathbb{Q}, \\ 2x - 1, & \text{if } x \in (0, 2) \cap (\mathbb{R} \setminus \mathbb{Q}). \end{cases}$$

Which one of the following is not true?

- A) f is continuous at x = 1
- B) f is differentiable at x = 1
- C) f is not differentiable at x = 1
- D) f is differentiable only at x = 1.
- (31) Let R be a finite commutative ring with unity and P be an ideal in R satisfying: $ab \in P \implies a \in P$ or $b \in P$, for any $a, b \in R$. Consider the statements:
 - (i) P is a finite ideal
 - (ii) P is a prime ideal
 - (iii) P is a maximal ideal.

Then

- A) (i),(ii) and (iii) are all correct
- B) None of (i),(ii) or (iii) is correct
- C) (i) and (ii) are correct but (iii) is not correct
- D) (i) and (ii) are not correct but (iii) is correct.
- (32) Let $\phi: R \to R'$ be a non-zero mapping such that $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in R$, where R, R' are rings with unity. Then
 - A) $\phi(1) = 1$ for all rings with unity R, R'
 - B) $\phi(1) \neq 1$ for any rings with unity R, R'
 - C) $\phi(1) \neq 1$ if R' is an integral domain or if ϕ is onto
 - D) $\phi(1) = 1$ if R' is an integral domain or if ϕ is onto.
- (33) Let R be a ring, L be a left ideal of R and let $\lambda(L) = \{x \in R \mid xa = 0 \ \forall a \in L\}$. Then
 - A) $\lambda(L)$ is not a two-sided ideal of R
 - B) $\lambda(L)$ is a two-sided ideal of R
 - C) $\lambda(L)$ is a left but not right ideal of R
 - D) $\lambda(L)$ is a right but not left ideal of R.
- (34) Let $S = \{a + ib \mid a, b \in \mathbb{Z}, b \text{ is even}\}$. Then
 - A) S is both a subring and an ideal of $\mathbb{Z}[i]$
 - B) S is neither an ideal nor a subring of $\mathbb{Z}[i]$
 - C) S is an ideal of $\mathbb{Z}[i]$ but not a subring of $\mathbb{Z}[i]$
 - D) S is a subring of $\mathbb{Z}[i]$ but not an ideal of $\mathbb{Z}[i]$.

- (35) The set of all ring homomorphism $\phi: \mathbb{Z} \to \mathbb{Z}$
 - A) is an infinite set
 - B) has exactly two elements
 - C) is a singleton set
 - D) is an empty set.
- (36) Let F be a field of characteristic 2. Then
 - A) either F has 2^n elements or is an infinite field
 - B) F is an infinite field
 - C) F is a finite field with 2^n elements
 - D) either F is an infinite field or a finite field with 2n elements.
- (37) Consider the following classes of commutative rings with unity: ED is the class of Euclidean domain, PID is the class of principal ideal domain, UFD is the class of unique factorization domain and ID is the class of integral domain. Then
 - A) $PID \subset ED \subset UFD \subset ID$
 - B) $ED \subset UFD \subset PID \subset ID$
 - C) $ED \subset PID \subset UFD \subset ID$
 - D) UFD \subset PID \subset ED \subset ID.
- (38) Consider the polynomial ring $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$. Then
 - A) $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ both are Euclidean domains
 - B) $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ both are not Euclidean domains
 - C) $\mathbb{Z}[x]$ is a Euclidean domain but $\mathbb{Q}[x]$ is not a Euclidean domain
 - D) $\mathbb{Q}[x]$ is a Euclidean domain but $\mathbb{Z}[x]$ is not a Euclidean domain.
- (39) Let R be a commutative ring with unity such that the polynomial ring R[x] is a principal ideal domain. Then
 - A) R is a field
 - B) R is a PID but not a field
 - C) R is a UFD but not a field
 - D) R is not a field but is an integral domain.
- (40) Let T be a linear transformation on \mathbb{R}^3 defined by $T(x_1, x_2, x_3) = (3x_1, x_1 x_2, x_3)$ $x_2, 2x_1 + x_2 + x_3$). What is T^{-1} ?

 - A) $T^{-1}(x_1, x_2, x_3) = \left(\frac{x_1}{3}, \frac{x_1}{3} + x_2, -x_1 + x_2 + x_3\right)$ B) $T^{-1}(x_1, x_2, x_3) = \left(\frac{x_1}{3}, \frac{x_1}{3} x_2, x_1 + x_2 + x_3\right)$ C) $T^{-1}(x_1, x_2, x_3) = \left(\frac{x_1}{3}, \frac{x_1}{3} x_2, -x_1 + x_2 + x_3\right)$ D) $T^{-1}(x_1, x_2, x_3) = \left(\frac{x_1}{3}, \frac{x_1}{3} + x_2, x_1 + x_2 + x_3\right)$.

- 8
- (41) Let V be the vector space of all $n \times n$ matrices over a field F. Which one of the following is not a subspace of V?
 - A) All upper triangular matrices of order n
 - B) All non-singular matrices of order n
 - C) All symmetric matrices of order n
 - D) All matrices of order n, the sum of whose diagonal entries is zero.
- (42) Let V be the vector space of all $n \times n$ matrices over a field. Let V_1 be the subspace of V consisting of all symmetric matrices of order n and V_2 be the subspace of V consisting of all skew-symmetric matrices of order n. Which one of the following is not a subspace of V?
 - A) $V_1 + V_2$

- (43) Let $V = \mathbb{R}^3$ be the real inner product space with the usual inner product. A basis for the subspace u^{\perp} of V, where u = (1, 3, -4), is
 - A) $\{(1,0,3),(0,1,4)\},\$
- C) $\{(-3,1,0),(4,0,1)\}$
- B) $\{(3,-1,0),(-6,2,0)\}$ D) $\{(3,1,0),(-4,0,1)\}$.
- (44) The matrix A that represents the linear operator T on \mathbb{R}^2 , where T is the reflection in \mathbb{R}^2 about the line y = -x is
 - $A) A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 - B) $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{pmatrix}$ C) $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

 - D) $A = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$.
- (45) Consider the subspace U of \mathbb{R}^4 spanned by the vectors $v_1 = (1,1,1,1), v_2 =$ $(1,1,2,4), v_3 = (1,2,-4,-3)$. An orthonormal basis of U is
 - A) $\{\frac{1}{2}(1,1,1,1), \frac{1}{\sqrt{6}}(-1,-1,0,2), \frac{1}{\sqrt{2}}(1,3,-6,2)\}$ B) $\{\frac{1}{2}(1,1,1,1), \frac{1}{2\sqrt{6}}(-1,-1,0,2), \frac{1}{\sqrt{2}}(1,3,6,-2)\}$ C) $\{\frac{1}{2}(1,1,1,1), \frac{1}{\sqrt{6}}(-1,-1,0,2), \frac{1}{5\sqrt{2}}(1,3,-6,2)\}$ D) $\{(1,1,1,1), (-1,-1,0,2), (1,3,-6,2)\}.$
- (46) Let V be a vector space over \mathbb{Z}_5 of dimension 3. The number of elements in V is
 - A) 5
- B) 125
- C) 243
- D) 3.

(47)	Let W be the subspace of \mathbb{R}^4 spanned by the vectors $u_1=(1,-2,5,-3), u_2=(2,3,1,-4), u_3=(3,8,-3,-5)$. The dimension of W is					
	A) 1	B) 2	C) 3	D) 4.		
(48)	Let λ be a non-zero characteristic root of a non-singular matrix A of order 2×2 . Then a characteristic root of the matrix adj. A is					
	A) $\frac{\lambda}{ A }$	B) $\frac{ A }{\lambda}$	C) $\lambda A $	D) $\frac{1}{\lambda}$.		
(49)	Let $A = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ is equal to	$\begin{pmatrix} 2 \\ 1 \end{pmatrix} \text{ be a } 2 \times 2 \text{ mat}$	erix. Then the exp	oression $A^5 - 2A^4 - 3A^3 + A^2$		
	A) $2A + 3I$	B) $3A + 2I$	C) $2A - 3I$	D) $3A - 2I$.		
(50)	The number of elements in the group $Aut \mathbb{Z}_{200}$ of all automorphisms of \mathbb{Z}_{200} is					
	A) 78	B) 80	C) 84	D) 82.		
(51)	Let $A = \begin{pmatrix} 2 & 6 \\ 3 & 5 \end{pmatrix}$ be a matrix over the integers modulo 11. The inverse of A is					
	A) $A = \begin{pmatrix} 8\\10 \end{pmatrix}$ B) $A = \begin{pmatrix} 10\\9 \end{pmatrix}$ C) $A = \begin{pmatrix} 9\\9 \end{pmatrix}$ D) $A = \begin{pmatrix} 9\\10 \end{pmatrix}$	8 9) 10 8)				
(52)	The order of the group $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad-bc=1 \text{ and } a,b,c,d \in \mathbb{Z}_3 \right\}$ relative to matrix multiplication is					
	A) 18	B) 20	C) 24	D) 22.		
(53)	The number o	f subgroups of the g	roup \mathbb{Z}_{200} is			
	A) 8 C) 12		B) 14 D) 10.			

(54) Let G = U(32) and $H = \{1, 31\}$. The quotient group G/H is isomorphic to

A) \mathbb{Z}_8

B) $\mathbb{Z}_4 \oplus \mathbb{Z}_2$ C) $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus$ D) The dihec	$ \ni \mathbb{Z}_2 $ dral group D_4 .							
(55) The number of sylow 5-subgroups of the group $\mathbb{Z}_6 \oplus \mathbb{Z}_5$ is								
A) 6	B) 4	C) 12	D) 1.					
(56) The singular solution of the first order differential equation $p^3 - 4xyp + 8y^2 = 0$ is								
A) $27x - 4y^{2}$ C) $27y - 4x^{2}$		B) $27y - 4x$ D) $27y + 4x$						
(57) The general solution of the system of first order differential equations								
$\frac{dx}{dt} + \frac{dy}{dt} = x + t,$ $\frac{dx}{dt} - \frac{d^2y}{dt^2} = 0$								

A)
$$x = \frac{1}{2}t + c_1t^2 + c_2t$$
; $y = \frac{1}{2}t - c_1t + c_2$
B) $x = \frac{1}{2}t^2 + c_1t + c_2$; $y = \frac{1}{6}t^3 + \frac{1}{2}c_1t^2 + (c_2 - c_1)t + c_3$
C) $x = \frac{1}{2}t^2 - c_1t + c_2t^2$; $y = \frac{1}{6}t^2 + \frac{1}{2}c_1t^2 + (c_2 - c_1)t^2 + c_3$
D) $x = \frac{1}{3}t^2 + c_1t + c_2$; $y = \frac{1}{6}t^3 - \frac{1}{2}c_1t + (c_2 - c_1)t^2 + c_3$.
(58) Consider the following statements regarding the two solutions $y_1(x) = \sin x$ and

- $y_2(x) = \cos x \text{ of } y'' + y = 0$: (i) They are linearly dependent solutions of y'' + y = 0.
 - (ii) Their wronskian is 1.

is given by

(iii) They are linearly independent solutions of y'' + y = 0. which of the statements is true?

(59) The general solution of $\frac{d^4y}{dx^4} - 5\frac{d^3y}{dx^3} + 6\frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 8y = 0$ is

A)
$$y = c_1 + c_2 x + c_3 x^2 + c_4 e^x$$

B) $y = c_1 - c_2 x + c_3 x^3 + c_4 e^{-x}$

B)
$$y = c_1 - c_2 x + c_3 x^3 + c_4 e^{-x}$$

C) $y = (c_1 + c_2 x + c_3 x^2) e^{2x} + c_4 e^x$

D)
$$y = (c_1 + c_2x + c_3x^2)e^{2x} + c_4e^{-x}$$
.

- (60) The solution of the initial value problem $\frac{d^2y}{dx^2} 6\frac{dy}{dx} + 25y = 0$, y(0) = -3, y'(0) = -3
 - A) $y = e^{3x}(2\cos 4x + 3\sin 2x)$

 - B) $y = e^{-3x}(2\sin 2x 3\cos 2x)$ C) $y = e^{3x}(2\sin 4x 3\cos 4x)$
 - D) $y = e^{3x}(2\sin 4x + 3\cos 4x)$
- (61) The sturm-Liouville problem given by $y'' + \lambda y = 0$, y(0) = 0, $y(\pi) = 0$ has a trivial solution if
 - A) $\lambda \leq 0$

B) $\lambda > 0$

C) $0 < \lambda < 1$

- D) $\lambda > 1$.
- (62) The initial value problem $y' = 1 + y^2, y(0) = 1$ has the solution given by
 - A) $y = \tan(x \frac{\pi}{4})$ B) $y = \tan(x + \frac{\pi}{4})$

 - C) $y = \tan(x \frac{\pi}{2})$ D) $y = \tan(x + \frac{\pi}{2})$.
- (63) The series expansion that gives y as a function of x in neighborhood of x=0when $\frac{dy}{dx} = x^2 + y^2$; with boundary conditions y(0) = 0 is given by
 - A) $y = \frac{1}{3}x^3 + \frac{1}{63}x^7 + \frac{2}{2079}x^{11} + \cdots$ B) $y = \frac{1}{2}x^3 + \frac{1}{8}x^5 + \frac{1}{32}x^7 + \cdots$ C) $y = x^2 + \frac{1}{2!}x^3 + \frac{1}{3!}x^4 + \cdots$ D) $y = \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + \frac{1}{6!}x^6 + \cdots$
- (64) The value of y(0.2) obtained by solving the equation $\frac{dy}{dx} = \log(x+y)$, y(0) = 1 by modified Euler's method is equal to
 - A) 1.223

B) 1.0082

C) 2.381

- D) 1.639.
- (65) Reciprocal square root iteration formula for $N^{-1/2}$ is given by

 - A) $x_{i+1} = \frac{x_i}{2}(3 x_i^2 N)$ B) $x_{i+1} = \frac{x_i}{9}(4 x_i^2 N)$ C) $x_{i+1} = \frac{1}{16}(8 x_i^2 N)$ D) $x_{i+1} = \frac{x_i}{4}(10 x_i^2 N)$.

- (66) If the formula $\int_0^h f(x) dx = h[af(0) + bf(\frac{h}{3}) + cf(h)]$ is exact for polynomials of as high order as possible, then [a, b, c] is
 - A) [0, 2, 3]

C) $\left[\frac{3}{4}, 2, 9\right]$

- B) $[1, 5, \frac{9}{4}]$ D) $[0, \frac{3}{4}, \frac{1}{4}]$.
- (67) If f is continuous, $f(x_1)$ and $f(x_2)$ are of opposite sign and $f(\frac{x_1+x_2}{2})$ has same sign as $f(x_1)$, then
 - A) $(\frac{x_1+x_2}{2}, x_2)$ must contain at least one zero of f(x)
 - B) $(\frac{x_1+x_2}{2}, x_2)$ contain no zero of f(x)
 - C) $(x_1, \frac{x_1+x_2}{2})$ must contain at least one zero of f(x)
 - D) $(\frac{x_1+x_2}{2}, x_2)$ has no zero of f(x).
- (68) The first iteration solution of system of equations

$$2x_1 - x_2 = 7$$
$$-x_1 + 2x_2 - x_3 = 1$$
$$-x_2 + 2x_3 = 1$$

by Gauss-Seidel method with initial approximation $x^{(0)} = 0$ is

- A) [3.5, 2.25, 1.625]
- B) [4.625, 3.625, 2.315]
- C) [5, 3, 1]
- D) [5.312, 4.312, 2.656].
- (69) The partial differential equation for the family of surfaces $z = ce^{\omega t} \cos(\omega x)$, where c and ω are arbitrary constants, is
 - $A) z_{xx} + z_{tt} = 0$
 - $B) z_{xx} z_{tt} = 0$
 - $C) z_{xt} + z_{tt} = 0$
 - D) $z_{xt} + z_{xx} = 0$.
- (70) The integral surface of the linear partial differential equation $x(y^2 + z)p y(x^2 + z)$ $z)q = (x^2 - y^2)z$ which contains the straight line x - y = 0, z = 1 is
 - A) $x^2 + y^2 + 2xyz 2z + 2 = 0$
 - B) $x^2 + y^2 2xyz 2z + 2 = 0$
 - C) $x^2 + y^2 2xyz + 2z + 2 = 0$
 - D) $x^2 + y^2 + 2xyz + 2z + 2 = 0$
- (71) The solution of heat equation $\frac{\partial^2 z}{\partial x^2} = \frac{1}{k} \frac{\partial z}{\partial t}$ for which a solution tends to zero as $t \to \infty$ is

A)
$$z(x,t) = \sum_{n=0}^{\infty} c_n \cos(nx + \epsilon_n)e^{-n^2kt}$$

B)
$$z(x,t) = \sum_{n=0}^{\infty} c_n \cos(nx + \epsilon_n) e^{n^2kt}$$

C)
$$z(x,t) = \sum_{n=0}^{\infty} c_n \sin(nx + \epsilon_n) e^{n^2kt}$$

A)
$$z(x,t) = \sum_{n=0}^{\infty} c_n \cos(nx + \epsilon_n) e^{-n^2kt}$$

B) $z(x,t) = \sum_{n=0}^{\infty} c_n \cos(nx + \epsilon_n) e^{n^2kt}$
C) $z(x,t) = \sum_{n=0}^{\infty} c_n \sin(nx + \epsilon_n) e^{n^2kt}$
D) $z(x,t) = \sum_{n=-\infty}^{\infty} c_n \sin(nx + \epsilon_n) e^{n^2kt}$

(72) The complete integral of the equation $p^2y(1+x^2)=qx^2$ is

A)
$$z = a(1+x^2) + \frac{1}{2}a^2y^2 + b$$

B)
$$z = \frac{1}{2}a^2\sqrt{1+x^2} + a^2y^2 + b$$

C)
$$z = a\sqrt{1+x^2} + \frac{1}{2}a^2y^2 + b$$

D) $z = a(1+x^2) + \frac{1}{2}ay + b$.

D)
$$z = a(1+x^2) + \frac{1}{2}ay + b$$
.

(73) The general integral of the partial differential equation $z(xp - yq) = y^2 - x^2$ is

A)
$$x^2 + y^2 + z^2 = f(xy)$$

B)
$$x^2 - y^2 + z^2 = f(xy)$$

C)
$$x^2 - y^2 - z^2 = f(xy)$$

D)
$$x^2 + y^2 - z^2 = f(xy)$$
.

(74) The solution of the partial differential equation $\frac{\partial^4 z}{\partial x^4} + \frac{\partial^4 z}{\partial u^4} = 2 \frac{\partial^4 z}{\partial x^2 \partial u^2}$ is

A)
$$z = x\phi_1(x+y) + \phi_2(x+y) + x\psi_1(x+y) + \psi_2(x+y)$$

B)
$$z = x\phi_1(x-y) + \phi_2(x-y) + x\psi_1(x-y) + \psi_2(x-y)$$

C)
$$z = x\phi_1(x+y) + \phi_2(x-y) + x\psi_1(x+y) + \psi_2(x-y)$$

D)
$$z = x\phi_1(x-y) + \phi_2(x-y) + x\psi_1(x+y) + \psi_2(x+y)$$
.

- (75) The eigen values and eigen functions of the vibrating string problem $u_{tt}-c^2u_{xx}=0$, $0 \le x \le l, t > 0, \quad u(x,0) = f(x), \ 0 \le x \le l, \quad u_t(x,0) = g(x), \ 0 \le x \le l,$ $u(0,t) = 0, u(l,t) = 0, t \ge 0$ are

B)
$$(\frac{n\pi}{l})^2$$
, $\cos \frac{n\pi x}{l}$, $n = 1, 2, 3, \cdots$

A)
$$(\frac{n\pi}{l})^2$$
, $\sin \frac{n\pi x}{l}$, $n = 1, 2, 3, \cdots$
B) $(\frac{n\pi}{l})^2$, $\cos \frac{n\pi x}{l}$, $n = 1, 2, 3, \cdots$
C) $\frac{n\pi}{l}$, $\sin \frac{n\pi x}{l}$, $\cos \frac{n\pi x}{l}$, $n = 1, 2, 3, \cdots$

D) All the above.